Performance Debugging and Tuning of Flash-X with Data Analysis Tools

K. Huck, Xingfu Wu, Anshu Dubey, Antigoni Georgiadou, J. A. Harris, T. Klosterman, Matthew Trappett, K. Weide
{"title":"Performance Debugging and Tuning of Flash-X with Data Analysis Tools","authors":"K. Huck, Xingfu Wu, Anshu Dubey, Antigoni Georgiadou, J. A. Harris, T. Klosterman, Matthew Trappett, K. Weide","doi":"10.1109/ProTools56701.2022.00009","DOIUrl":null,"url":null,"abstract":"State-of-the-art multiphysics simulations running on large scale leadership computing platforms have many variables contributing to their performance and scaling behavior. We recently encountered an interesting performance anomaly in Flash-X, a multiphysics multicomponent simulation software, when characterizing its performance behavior on several large-scale HPC platforms. The anomaly was tracked down to the interaction between the use of dynamic allocation of scratch data and data locality in the cache hierarchy. In this paper we present the details of unexpected performance variability of Flash-X, its extensive analysis using the performance measurement tool TAU to collect the data and Python data analysis libraries to explore the data, and our insights from this experience. In this process, we discovered and removed or mitigated two additional performance limiting bottlenecks for performance tuning.","PeriodicalId":193850,"journal":{"name":"2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM Workshop on Programming and Performance Visualization Tools (ProTools)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ProTools56701.2022.00009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

State-of-the-art multiphysics simulations running on large scale leadership computing platforms have many variables contributing to their performance and scaling behavior. We recently encountered an interesting performance anomaly in Flash-X, a multiphysics multicomponent simulation software, when characterizing its performance behavior on several large-scale HPC platforms. The anomaly was tracked down to the interaction between the use of dynamic allocation of scratch data and data locality in the cache hierarchy. In this paper we present the details of unexpected performance variability of Flash-X, its extensive analysis using the performance measurement tool TAU to collect the data and Python data analysis libraries to explore the data, and our insights from this experience. In this process, we discovered and removed or mitigated two additional performance limiting bottlenecks for performance tuning.
Flash-X性能调试与调优与数据分析工具
在大型领导力计算平台上运行的最先进的多物理场模拟有许多影响其性能和扩展行为的变量。我们最近在描述Flash-X(一个多物理场多组件仿真软件)在几个大规模HPC平台上的性能行为时,遇到了一个有趣的性能异常。这种异常可以追溯到使用动态分配临时数据和缓存层次结构中的数据位置之间的相互作用。在本文中,我们介绍了Flash-X意想不到的性能变化的细节,使用性能测量工具TAU收集数据和Python数据分析库探索数据的广泛分析,以及我们从这次经验中获得的见解。在此过程中,我们发现并消除或减轻了性能调优的两个附加性能限制瓶颈。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信