Kernel-Based Regression in Transient Nonlinear Electro-Quasistatic Field Simulations

Dudu Zhang, F. Kasolis, C. Jörgens, M. Clemens
{"title":"Kernel-Based Regression in Transient Nonlinear Electro-Quasistatic Field Simulations","authors":"Dudu Zhang, F. Kasolis, C. Jörgens, M. Clemens","doi":"10.1109/CEFC46938.2020.9451356","DOIUrl":null,"url":null,"abstract":"During high resolution transient electro-quasistatic field simulations, large sparse nonlinear algebraic systems need to be solved iteratively at each timestep. In previous works, the subspace projection extrapolation method and the Gaussian process regression method succeeded in providing improved start values with known previous transient solutions. In this work, a kernel-based regression model and a linear extrapolation model is combined for providing improved start values for a repeated iterative Newton-Raphson method used within an implicit time- integration scheme. The performance of estimated start values using the combined model on a small data set is presented and compared with other methods.","PeriodicalId":439411,"journal":{"name":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC46938.2020.9451356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During high resolution transient electro-quasistatic field simulations, large sparse nonlinear algebraic systems need to be solved iteratively at each timestep. In previous works, the subspace projection extrapolation method and the Gaussian process regression method succeeded in providing improved start values with known previous transient solutions. In this work, a kernel-based regression model and a linear extrapolation model is combined for providing improved start values for a repeated iterative Newton-Raphson method used within an implicit time- integration scheme. The performance of estimated start values using the combined model on a small data set is presented and compared with other methods.
暂态非线性静电场模拟中的核回归
在高分辨率瞬态静电场模拟中,需要在每个时间步长迭代求解大型稀疏非线性代数系统。在以前的工作中,子空间投影外推法和高斯过程回归法成功地提供了已知先前瞬态解的改进起始值。在这项工作中,基于核的回归模型和线性外推模型相结合,为隐式时间积分方案中使用的重复迭代牛顿-拉夫森方法提供改进的起始值。给出了该组合模型在小数据集上估计起始值的性能,并与其他方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信