A Machine-learning-Aided Visual Analysis Workflow for Investigating Air Pollution Data

Yun-Hsin Kuo, Takanori Fujiwara, C. Chou, Chun Chen, K. Ma
{"title":"A Machine-learning-Aided Visual Analysis Workflow for Investigating Air Pollution Data","authors":"Yun-Hsin Kuo, Takanori Fujiwara, C. Chou, Chun Chen, K. Ma","doi":"10.1109/PacificVis53943.2022.00018","DOIUrl":null,"url":null,"abstract":"Analyzing air pollution data is challenging as there are various analysis focuses from different aspects: feature (what), space (where), and time (when). As in most geospatial analysis problems, besides high-dimensional features, the temporal and spatial dependencies of air pollution induce the complexity of performing analysis. Machine learning methods, such as dimensionality reduction, can extract and summarize important information of the data to lift the burden of understanding such a complicated environment. In this paper, we present a methodology that utilizes multiple machine learning methods to uniformly explore these aspects. With this methodology, we develop a visual analytic system that supports a flexible analysis workflow, allowing domain experts to freely explore different aspects based on their analysis needs. We demonstrate the capability of our system and analysis workflow supporting a variety of analysis tasks with multiple use cases.","PeriodicalId":117284,"journal":{"name":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 15th Pacific Visualization Symposium (PacificVis)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PacificVis53943.2022.00018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Analyzing air pollution data is challenging as there are various analysis focuses from different aspects: feature (what), space (where), and time (when). As in most geospatial analysis problems, besides high-dimensional features, the temporal and spatial dependencies of air pollution induce the complexity of performing analysis. Machine learning methods, such as dimensionality reduction, can extract and summarize important information of the data to lift the burden of understanding such a complicated environment. In this paper, we present a methodology that utilizes multiple machine learning methods to uniformly explore these aspects. With this methodology, we develop a visual analytic system that supports a flexible analysis workflow, allowing domain experts to freely explore different aspects based on their analysis needs. We demonstrate the capability of our system and analysis workflow supporting a variety of analysis tasks with multiple use cases.
用于调查空气污染数据的机器学习辅助可视化分析工作流
分析空气污染数据具有挑战性,因为有不同的分析重点:特征(什么),空间(哪里)和时间(什么时候)。与大多数地理空间分析问题一样,除了高维特征外,空气污染的时空依赖性导致了执行分析的复杂性。机器学习方法,如降维,可以提取和总结数据的重要信息,以减轻理解这种复杂环境的负担。在本文中,我们提出了一种利用多种机器学习方法来统一探索这些方面的方法。使用这种方法,我们开发了一个支持灵活分析工作流的可视化分析系统,允许领域专家根据他们的分析需求自由地探索不同的方面。我们演示了我们的系统和分析工作流的能力,这些能力支持具有多个用例的各种分析任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信