Robust Control of Adaptive Model Predictive Control using Online Model Estimation

M. R. Mariya, V. ShashankS., M. Mamta
{"title":"Robust Control of Adaptive Model Predictive Control using Online Model Estimation","authors":"M. R. Mariya, V. ShashankS., M. Mamta","doi":"10.1109/ANZCC56036.2022.9966969","DOIUrl":null,"url":null,"abstract":"In recent years, designing an adaptive model predictive controller (AMPC) with varying nonlinear plant parameters in real-time has been a challenging problem. Estimating the model parameters under real-time variations require sufficiently excited signal. Hence, this paper proposes an online model estimation technique for adaptive model predictive control (AMPC) using Recursive Polynomial Model Estimator (RPME). Parameters of the system are continuously varied during real-time to validate the robustness of the controller. Linear plant model parameters are estimated online using RPME and fed to the adaptive model predictive controller to compute the control laws with reference to the step signal. Real-time simulation for nonlinear system response has been conducted using AMPC on Van Der Pol oscillator and Inverted Pendulum System.","PeriodicalId":190548,"journal":{"name":"2022 Australian & New Zealand Control Conference (ANZCC)","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC56036.2022.9966969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, designing an adaptive model predictive controller (AMPC) with varying nonlinear plant parameters in real-time has been a challenging problem. Estimating the model parameters under real-time variations require sufficiently excited signal. Hence, this paper proposes an online model estimation technique for adaptive model predictive control (AMPC) using Recursive Polynomial Model Estimator (RPME). Parameters of the system are continuously varied during real-time to validate the robustness of the controller. Linear plant model parameters are estimated online using RPME and fed to the adaptive model predictive controller to compute the control laws with reference to the step signal. Real-time simulation for nonlinear system response has been conducted using AMPC on Van Der Pol oscillator and Inverted Pendulum System.
基于在线模型估计的自适应模型预测控制鲁棒控制
近年来,设计具有实时变化非线性对象参数的自适应模型预测控制器(AMPC)一直是一个具有挑战性的问题。实时变化下的模型参数估计需要足够的激励信号。为此,本文提出了一种基于递归多项式模型估计器的自适应模型预测控制(AMPC)在线模型估计技术。系统参数实时连续变化,以验证控制器的鲁棒性。利用RPME在线估计线性对象模型参数,并将其输入自适应模型预测控制器,根据阶跃信号计算控制律。利用AMPC对范德波尔振荡器和倒立摆系统进行了非线性系统响应的实时仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信