Time-Varying Parameter Identification of a Tumor Growth Model Using Moving Horizon Estimation

B. Czakó, D. Drexler, L. Kovács
{"title":"Time-Varying Parameter Identification of a Tumor Growth Model Using Moving Horizon Estimation","authors":"B. Czakó, D. Drexler, L. Kovács","doi":"10.1109/INES56734.2022.9922626","DOIUrl":null,"url":null,"abstract":"A nonlinear Moving Horizon Estimator (MHE) was developed which can estimate the time-varying parameters of a tumor growth model under chemotherapeutic treatment. We introduce a sequential estimation strategy using the Full Information Estimator (FIE) that is able to approximate an estimate to the average initial model parameters. The algorithm penalizes the estimation error and the deviation of parameters between each consecutive iteration of the FIE. We also describe the tuning process in detail, where we utilized a grid search process to find the best choice for the parameters of the MHE. The algorithm was tuned and validated using time-series data, originating from in vivo mice experiments.","PeriodicalId":253486,"journal":{"name":"2022 IEEE 26th International Conference on Intelligent Engineering Systems (INES)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 26th International Conference on Intelligent Engineering Systems (INES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INES56734.2022.9922626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A nonlinear Moving Horizon Estimator (MHE) was developed which can estimate the time-varying parameters of a tumor growth model under chemotherapeutic treatment. We introduce a sequential estimation strategy using the Full Information Estimator (FIE) that is able to approximate an estimate to the average initial model parameters. The algorithm penalizes the estimation error and the deviation of parameters between each consecutive iteration of the FIE. We also describe the tuning process in detail, where we utilized a grid search process to find the best choice for the parameters of the MHE. The algorithm was tuned and validated using time-series data, originating from in vivo mice experiments.
基于移动水平估计的肿瘤生长模型时变参数辨识
提出了一种非线性移动视界估计器(MHE),用于估计化疗条件下肿瘤生长模型的时变参数。我们引入了一种使用全信息估计器(FIE)的序列估计策略,该策略能够近似估计平均初始模型参数。该算法对每次连续迭代的估计误差和参数偏差进行惩罚。我们还详细描述了调优过程,其中我们利用网格搜索过程来找到MHE参数的最佳选择。该算法使用来自小鼠体内实验的时间序列数据进行了调整和验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信