An incremental descent method for multi-objective optimization

I. F. D. Oliveira, R. Takahashi
{"title":"An incremental descent method for multi-objective optimization","authors":"I. F. D. Oliveira, R. Takahashi","doi":"10.1080/10556788.2022.2124989","DOIUrl":null,"url":null,"abstract":"ABSTRACT Multi-objective steepest descent, under the assumption of lower-bounded objective functions with L-Lipschitz continuous gradients, requires gradient and function computations to produce a measure of proximity to critical conditions akin to in the single-objective setting, where m is the number of objectives considered. We reduce this to with a multi-objective incremental approach that has a computational cost that does not grow with the number of objective functions m.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2022.2124989","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

ABSTRACT Multi-objective steepest descent, under the assumption of lower-bounded objective functions with L-Lipschitz continuous gradients, requires gradient and function computations to produce a measure of proximity to critical conditions akin to in the single-objective setting, where m is the number of objectives considered. We reduce this to with a multi-objective incremental approach that has a computational cost that does not grow with the number of objective functions m.
多目标优化的增量下降法
在具有L-Lipschitz连续梯度的下界目标函数的假设下,多目标最陡下降需要梯度和函数计算来产生类似于单目标设置的接近临界条件的度量,其中m是考虑的目标数。我们用一种多目标增量方法来减少这种情况,这种方法的计算成本不会随着目标函数m的数量而增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信