A labeled random finite set spawning model

Daniel S. Bryant, B. Vo, B. Vo, B. Jones
{"title":"A labeled random finite set spawning model","authors":"Daniel S. Bryant, B. Vo, B. Vo, B. Jones","doi":"10.1109/ICCAIS.2017.8217579","DOIUrl":null,"url":null,"abstract":"Previous labeled random finite set filter developments use a target motion model that only accounts for survival and birth. While such a model provides the means for a multi-target tracking filter such as the Generalized Labeled Multi-Bernoulli filter to capture target births and deaths in a wide variety of applications, it lacks the capability to capture the lineages of spawned target tracks. In this paper, we propose a labeled random finite set spawning model and derive the resulting multi-target prediction and filtering densities. This formulation enables the joint estimation of spawned object's state and and information regarding its lineage.","PeriodicalId":410094,"journal":{"name":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Control, Automation and Information Sciences (ICCAIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAIS.2017.8217579","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Previous labeled random finite set filter developments use a target motion model that only accounts for survival and birth. While such a model provides the means for a multi-target tracking filter such as the Generalized Labeled Multi-Bernoulli filter to capture target births and deaths in a wide variety of applications, it lacks the capability to capture the lineages of spawned target tracks. In this paper, we propose a labeled random finite set spawning model and derive the resulting multi-target prediction and filtering densities. This formulation enables the joint estimation of spawned object's state and and information regarding its lineage.
一个标记的随机有限集刷出模型
以前的标记随机有限集过滤器开发使用的目标运动模型只考虑生存和出生。虽然这种模型为多目标跟踪过滤器(如广义标记多伯努利过滤器)提供了在各种应用中捕获目标出生和死亡的手段,但它缺乏捕获生成目标轨迹的谱系的能力。在本文中,我们提出了一个标记的随机有限集生成模型,并推导了结果的多目标预测和过滤密度。这个公式允许对派生对象的状态和有关其沿袭的信息进行联合估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信