{"title":"The Quadratic Time-Varying Hausdorff and Large Deviation Multifractal Spectrum of Stochastic Fractal Signal","authors":"Gang Xiong, Shuning Zhang, Li Shu","doi":"10.1109/IWCFTA.2010.66","DOIUrl":null,"url":null,"abstract":"Although multifractal describes the spectrum distribution of Singularity Exponent (SE), it loses the temporal information, and it’s hard to describe the dynamics evolving process of non-stationary system. The time-varying singularity distribution indicates the spatial dynamics character of system. Therefore, the time-varying quadratic multifractal spectrum is proposed. Similar to the Wigner-Ville time-frequency analysis, the time-delayed conjugation of analyzed signal is selected as the windows function, and the quadratic time-singularity exponent distribution of the instantaneous self-correlation is deduced based on the short-time multifractal analysis, i.e. quadratic time-singularity multifractal distribution, which includes Hausdorff Measure, time-varying singular spectrum distribution, time-varying large deviation multifractal spectrum, which exhibits the singular exponent distribution of signal at arbitrary time.","PeriodicalId":157339,"journal":{"name":"2010 International Workshop on Chaos-Fractal Theories and Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Workshop on Chaos-Fractal Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCFTA.2010.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Although multifractal describes the spectrum distribution of Singularity Exponent (SE), it loses the temporal information, and it’s hard to describe the dynamics evolving process of non-stationary system. The time-varying singularity distribution indicates the spatial dynamics character of system. Therefore, the time-varying quadratic multifractal spectrum is proposed. Similar to the Wigner-Ville time-frequency analysis, the time-delayed conjugation of analyzed signal is selected as the windows function, and the quadratic time-singularity exponent distribution of the instantaneous self-correlation is deduced based on the short-time multifractal analysis, i.e. quadratic time-singularity multifractal distribution, which includes Hausdorff Measure, time-varying singular spectrum distribution, time-varying large deviation multifractal spectrum, which exhibits the singular exponent distribution of signal at arbitrary time.