Assessing One-Class and Binary Classification Approaches for Identifying Medicare Fraud

Joffrey L. Leevy, John T. Hancock, T. Khoshgoftaar
{"title":"Assessing One-Class and Binary Classification Approaches for Identifying Medicare Fraud","authors":"Joffrey L. Leevy, John T. Hancock, T. Khoshgoftaar","doi":"10.1109/IRI58017.2023.00053","DOIUrl":null,"url":null,"abstract":"Machine learning research on Medicare fraud detection is of national importance, primarily due to the extensive financial losses caused by this deceptive practice. Our big data study focuses on the Medicare Part D dataset, which we utilize to detect healthcare fraud perpetrated by physicians. In this paper, we compare and contrast One-Class Classification (OCC) and binary classification by examining eight different classifiers. The metrics applied in this analysis are Area Under the Receiver Operating Characteristic Curve (AUC) and Area Under the Precision-Recall Curve (AUPRC). Our findings indicate that binary classification outperforms OCC in Medicare fraud detection. Furthermore, we establish that the Decision Tree-based classifiers employed in the research are the most effective, with CatBoost delivering the best performance.","PeriodicalId":290818,"journal":{"name":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","volume":"141 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE 24th International Conference on Information Reuse and Integration for Data Science (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI58017.2023.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning research on Medicare fraud detection is of national importance, primarily due to the extensive financial losses caused by this deceptive practice. Our big data study focuses on the Medicare Part D dataset, which we utilize to detect healthcare fraud perpetrated by physicians. In this paper, we compare and contrast One-Class Classification (OCC) and binary classification by examining eight different classifiers. The metrics applied in this analysis are Area Under the Receiver Operating Characteristic Curve (AUC) and Area Under the Precision-Recall Curve (AUPRC). Our findings indicate that binary classification outperforms OCC in Medicare fraud detection. Furthermore, we establish that the Decision Tree-based classifiers employed in the research are the most effective, with CatBoost delivering the best performance.
评估识别医疗保险欺诈的一类和二元分类方法
医疗保险欺诈检测的机器学习研究具有国家重要性,主要是因为这种欺诈行为造成了广泛的经济损失。我们的大数据研究重点是医疗保险D部分数据集,我们利用这些数据来检测医生犯下的医疗欺诈行为。本文通过对八种不同分类器的研究,对一类分类(OCC)和二元分类进行了比较。本分析中应用的指标是接收者工作特征曲线下面积(AUC)和精确召回曲线下面积(AUPRC)。我们的研究结果表明,二元分类优于OCC在医疗欺诈检测。此外,我们确定了研究中使用的基于决策树的分类器是最有效的,其中CatBoost提供了最好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信