Nested erasure codes to achieve the singleton bounds

Phisan Kaewprapha, N. Puttarak, Jing Li
{"title":"Nested erasure codes to achieve the singleton bounds","authors":"Phisan Kaewprapha, N. Puttarak, Jing Li","doi":"10.1109/CISS.2009.5054697","DOIUrl":null,"url":null,"abstract":"This paper presents innovative ideas to construct maximum distance separable (MDS) codes, optimal error correction codes that achieve the singleton bounds. The proposed codes are based on a circularly symmetric construction applied to a novel class of nested graphs, referred to as complete-graph-of-rings (CGR). We demonstrate the general idea of transforming graphs to array codes, provide the sufficient conditions for achieving MDS, and present the specific algorithms to construct CGR graphs and MDS-CGR codes. The new codes require minimal encoding and decoding complexity that is theoretically possible, and are particularly useful for disk array applications.","PeriodicalId":433796,"journal":{"name":"2009 43rd Annual Conference on Information Sciences and Systems","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 43rd Annual Conference on Information Sciences and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS.2009.5054697","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper presents innovative ideas to construct maximum distance separable (MDS) codes, optimal error correction codes that achieve the singleton bounds. The proposed codes are based on a circularly symmetric construction applied to a novel class of nested graphs, referred to as complete-graph-of-rings (CGR). We demonstrate the general idea of transforming graphs to array codes, provide the sufficient conditions for achieving MDS, and present the specific algorithms to construct CGR graphs and MDS-CGR codes. The new codes require minimal encoding and decoding complexity that is theoretically possible, and are particularly useful for disk array applications.
嵌套的擦除代码来实现单例边界
本文提出了构造最大距离可分离码(MDS)的创新思想,这是一种实现单例边界的最优纠错码。所提出的编码是基于应用于一类新的嵌套图的圆对称构造,称为完全环图(CGR)。给出了将图转换为数组码的一般思路,给出了实现MDS的充分条件,并给出了构造CGR图和MDS-CGR码的具体算法。新编码需要最小的编码和解码复杂性,这在理论上是可能的,并且对磁盘阵列应用特别有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信