B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong
{"title":"Smartphone-Based Method for Detecting Periodontal Disease","authors":"B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong","doi":"10.1109/HI-POCT45284.2019.8962844","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.