Smartphone-Based Method for Detecting Periodontal Disease

B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong
{"title":"Smartphone-Based Method for Detecting Periodontal Disease","authors":"B. Askarian, F. Tabei, Grace Anne Tipton, J. Chong","doi":"10.1109/HI-POCT45284.2019.8962844","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.","PeriodicalId":269346,"journal":{"name":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Healthcare Innovations and Point of Care Technologies, (HI-POCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HI-POCT45284.2019.8962844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a novel periodontal disease detection method using smartphones, image processing, and machine learning techniques. Periodontal disease is an inflammatory disease known to be the main cause of tooth loss. Here, a CIELAB color space is adopted for feature extraction and the support vector machine (SVM) is applied for distinguishing healthy gum from diseased gum. A gadget is designed to block ambient light and eliminate refraction effect as well. We recruited 30 subjects consisting of 15 gum-diseased and 15 healthy subjects. Experimental results show that our proposed method detects periodontal infection with 94.3% accuracy, 92.6% sensitivity, and 93% specificity, respectively.
基于智能手机的牙周病检测方法
在本文中,我们提出了一种利用智能手机、图像处理和机器学习技术的新型牙周病检测方法。牙周病是一种炎症性疾病,是导致牙齿脱落的主要原因。本文采用CIELAB颜色空间进行特征提取,并采用支持向量机(SVM)进行健康牙龈和病变牙龈的区分。设计了一个小装置,可以阻挡环境光并消除折射效应。我们招募了30名受试者,其中15名牙龈病患者和15名健康受试者。实验结果表明,该方法检测牙周感染的准确率为94.3%,灵敏度为92.6%,特异性为93%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信