A Hybridization of Gravitational Search Algorithm and Particle Swarm Optimization for Odor Source Localization

Upma Jain, W. W. Godfrey, R. Tiwari
{"title":"A Hybridization of Gravitational Search Algorithm and Particle Swarm Optimization for Odor Source Localization","authors":"Upma Jain, W. W. Godfrey, R. Tiwari","doi":"10.4018/IJRAT.2017010102","DOIUrl":null,"url":null,"abstract":"This paper concerns with the problem of odor source localization by a team of mobile robots. The authors propose two methods for odor source localization which are largely inspired from gravitational search algorithm and particle swarm optimization. The intensity of odor across the plume area is assumed to follow the Gaussian distribution. As robots enter in the vicinity of plume area they form groups using K-nearest neighbor algorithm. The problem of local optima is handled through the use of search counter concept. The proposed approaches are tested and validated through simulation.","PeriodicalId":249760,"journal":{"name":"Int. J. Robotics Appl. Technol.","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Appl. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRAT.2017010102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper concerns with the problem of odor source localization by a team of mobile robots. The authors propose two methods for odor source localization which are largely inspired from gravitational search algorithm and particle swarm optimization. The intensity of odor across the plume area is assumed to follow the Gaussian distribution. As robots enter in the vicinity of plume area they form groups using K-nearest neighbor algorithm. The problem of local optima is handled through the use of search counter concept. The proposed approaches are tested and validated through simulation.
基于引力搜索和粒子群算法的气味源定位
本文研究了一组移动机器人的气味源定位问题。本文提出了两种气味源定位方法,这两种方法在很大程度上受到了引力搜索算法和粒子群算法的启发。假设烟羽区域的气味强度服从高斯分布。当机器人进入羽流区域附近时,采用k近邻算法进行分组。通过使用搜索计数器的概念来处理局部最优问题。通过仿真验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信