Low Latency Mobile Augmented Reality with Flexible Tracking

Wenxiao Zhang, B. Han, P. Hui
{"title":"Low Latency Mobile Augmented Reality with Flexible Tracking","authors":"Wenxiao Zhang, B. Han, P. Hui","doi":"10.1145/3241539.3267719","DOIUrl":null,"url":null,"abstract":"Jaguar is a mobile Augmented Reality (AR) framework that leverages GPU acceleration on edge cloud to push the limit of end-to-end latency for AR systems and enable accurate and large-scale object recognition based on image retrieval. It integrates the emerging AR development tools (e.g., ARCore and ARKit) into its client design for achieving flexible, robust and context-aware object tracking. Our prototype implementation of Jaguar reduces the end-to-end AR latency to ~33 ms and achieves accurate six degrees of freedom (6DoF) tracking. In this demo, we will show that our Jaguar client recognizes movie posters within the camera view by offloading computation intensive tasks to edge cloud and augments these posters with their movie trailers in 3D upon receiving the recognition results.","PeriodicalId":378965,"journal":{"name":"Proceedings of the 24th Annual International Conference on Mobile Computing and Networking","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 24th Annual International Conference on Mobile Computing and Networking","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3241539.3267719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Jaguar is a mobile Augmented Reality (AR) framework that leverages GPU acceleration on edge cloud to push the limit of end-to-end latency for AR systems and enable accurate and large-scale object recognition based on image retrieval. It integrates the emerging AR development tools (e.g., ARCore and ARKit) into its client design for achieving flexible, robust and context-aware object tracking. Our prototype implementation of Jaguar reduces the end-to-end AR latency to ~33 ms and achieves accurate six degrees of freedom (6DoF) tracking. In this demo, we will show that our Jaguar client recognizes movie posters within the camera view by offloading computation intensive tasks to edge cloud and augments these posters with their movie trailers in 3D upon receiving the recognition results.
具有灵活跟踪的低延迟移动增强现实
Jaguar是一个移动增强现实(AR)框架,它利用边缘云上的GPU加速来突破AR系统的端到端延迟限制,并基于图像检索实现准确和大规模的对象识别。它将新兴的AR开发工具(例如,ARCore和ARKit)集成到其客户端设计中,以实现灵活,稳健和上下文感知的对象跟踪。捷豹的原型实现将端到端AR延迟减少到约33毫秒,并实现了精确的六自由度(6DoF)跟踪。在这个演示中,我们将展示我们的Jaguar客户端通过将计算密集型任务卸载到边缘云来识别摄像机视图中的电影海报,并在接收到识别结果后将这些海报与电影预告片以3D形式增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信