Symmetry-Based Pruning in Itemset Mining

Saïd Jabbour, Mehdi Khiari, L. Sais, Y. Salhi, Karim Tabia
{"title":"Symmetry-Based Pruning in Itemset Mining","authors":"Saïd Jabbour, Mehdi Khiari, L. Sais, Y. Salhi, Karim Tabia","doi":"10.1109/ICTAI.2013.78","DOIUrl":null,"url":null,"abstract":"In this paper, we show how symmetries, a fundamental structural property, can be used to prune the search space in itemset mining problems. Our approach is based on a dynamic integration of symmetries in APRIORI-like algorithms to prune the set of possible candidate patterns. More precisely, for a given itemset, symmetry can be applied to deduce other itemsets while preserving their properties. We also show that our symmetry-based pruning approach can be extended to the general Mannila and Toivonen pattern mining framework. Experimental results highlight the usefulness and the efficiency of our symmetry-based pruning approach.","PeriodicalId":140309,"journal":{"name":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 25th International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2013.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we show how symmetries, a fundamental structural property, can be used to prune the search space in itemset mining problems. Our approach is based on a dynamic integration of symmetries in APRIORI-like algorithms to prune the set of possible candidate patterns. More precisely, for a given itemset, symmetry can be applied to deduce other itemsets while preserving their properties. We also show that our symmetry-based pruning approach can be extended to the general Mannila and Toivonen pattern mining framework. Experimental results highlight the usefulness and the efficiency of our symmetry-based pruning approach.
项集挖掘中基于对称的剪枝
在这篇文章中,我们展示了对称性,一个基本的结构性质,如何在项目集挖掘问题中被用来精简搜索空间。我们的方法是基于apriori类算法中对称性的动态集成来修剪可能的候选模式集。更准确地说,对于给定的项集,对称性可以应用于推导其他项集,同时保留它们的属性。我们还表明,我们基于对称的修剪方法可以扩展到一般的Mannila和Toivonen模式挖掘框架。实验结果表明了该方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信