Offset-Free Model Predictive Control of a Twin Rotor MIMO System (Extended Abstract)

Kelechi U Ebirim, Andrea Lecchini-Visintini, M. Rubagotti, E. Prempain
{"title":"Offset-Free Model Predictive Control of a Twin Rotor MIMO System (Extended Abstract)","authors":"Kelechi U Ebirim, Andrea Lecchini-Visintini, M. Rubagotti, E. Prempain","doi":"10.1109/Control55989.2022.9781370","DOIUrl":null,"url":null,"abstract":"The offset-free control of a nonlinear twin rotor MIMO system (TRMS) is challenging because of its dynamic cross-couplings. Offset-free model predictive control (MPC) strategies in the literature favour the use of a disturbance model, dependent on an observer for the estimation of some states, and a cost function that penalises the output error and control increment. We propose an alternative strategy with experimental validation, using a complete dynamic TRMS model and a cost function which penalises the states and control action, and we compare this with a baseline linear quadratic regulator (LQR) approach. Simulation results show satisfactory tracking in favour of MPC as input rate constraints are tightened.","PeriodicalId":101892,"journal":{"name":"2022 UKACC 13th International Conference on Control (CONTROL)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 UKACC 13th International Conference on Control (CONTROL)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Control55989.2022.9781370","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The offset-free control of a nonlinear twin rotor MIMO system (TRMS) is challenging because of its dynamic cross-couplings. Offset-free model predictive control (MPC) strategies in the literature favour the use of a disturbance model, dependent on an observer for the estimation of some states, and a cost function that penalises the output error and control increment. We propose an alternative strategy with experimental validation, using a complete dynamic TRMS model and a cost function which penalises the states and control action, and we compare this with a baseline linear quadratic regulator (LQR) approach. Simulation results show satisfactory tracking in favour of MPC as input rate constraints are tightened.
双转子MIMO系统的无偏移模型预测控制(扩展摘要)
非线性双转子多输入多输出系统(TRMS)由于存在动态交叉耦合,其无偏置控制具有挑战性。文献中的无偏移模型预测控制(MPC)策略倾向于使用干扰模型,依赖于对某些状态的估计的观测器,以及惩罚输出误差和控制增量的成本函数。我们提出了一种具有实验验证的替代策略,使用完整的动态TRMS模型和惩罚状态和控制动作的成本函数,并将其与基线线性二次调节器(LQR)方法进行比较。仿真结果表明,当输入速率约束收紧时,MPC的跟踪效果较好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信