J. O. B. Diniz, D. B. P. Quintanilha, A. C. Carvalho Filho, Daniel L. Gomes Jr, A. C. Silva, Geraldo Braz Jr, A. Paiva, D. D. S. Luz
{"title":"Detecção de COVID-19 em Imagens de Raio-X de Tórax através de Seleção Automática de Pré-processamento e de Rede Neural Convolucional","authors":"J. O. B. Diniz, D. B. P. Quintanilha, A. C. Carvalho Filho, Daniel L. Gomes Jr, A. C. Silva, Geraldo Braz Jr, A. Paiva, D. D. S. Luz","doi":"10.5753/sbcas.2023.229576","DOIUrl":null,"url":null,"abstract":"A COVID-19, mesmo com diminuição dos casos, é considerado um problema global, a detecção precoce ainda é relevante e pode ser crucial para salvar vidas. Este artigo apresenta um método para detecção automática de COVID-19 em raio-X de tórax usando seleção automática de melhoria de imagem e rede neural convolucional. O método usa pré-processamento de imagem para melhorar as características distintivas da COVID-19 em raio-X e seleciona uma rede neural convolucional para classificar as imagens. Os resultados mostram métricas relevantes com uma acurácia de 99,39% e F1 − Score de 98,71%. Essa abordagem pode ser valiosa para a triagem eficaz da doença, melhorando o tratamento e reduzindo as mortes relacionadas à COVID-19.","PeriodicalId":122965,"journal":{"name":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XXIII Simpósio Brasileiro de Computação Aplicada à Saúde (SBCAS 2023)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/sbcas.2023.229576","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A COVID-19, mesmo com diminuição dos casos, é considerado um problema global, a detecção precoce ainda é relevante e pode ser crucial para salvar vidas. Este artigo apresenta um método para detecção automática de COVID-19 em raio-X de tórax usando seleção automática de melhoria de imagem e rede neural convolucional. O método usa pré-processamento de imagem para melhorar as características distintivas da COVID-19 em raio-X e seleciona uma rede neural convolucional para classificar as imagens. Os resultados mostram métricas relevantes com uma acurácia de 99,39% e F1 − Score de 98,71%. Essa abordagem pode ser valiosa para a triagem eficaz da doença, melhorando o tratamento e reduzindo as mortes relacionadas à COVID-19.