LSSS Matrix-Based Attribute-Based Encryption on Lattices

Jian Zhao, Haiying Gao
{"title":"LSSS Matrix-Based Attribute-Based Encryption on Lattices","authors":"Jian Zhao, Haiying Gao","doi":"10.1109/CIS.2017.00062","DOIUrl":null,"url":null,"abstract":"Attribute-Based Encryption (ABE) schemes show unprecedented flexibility and expressiveness through the introduction of access policies. Compared to ABE schemes for thresholds or circuits from lattices, Linear Secret Sharing Schemes (LSSS) matrix-based ABE is more difficult to design for its abstract mathematical structure. We propose an ABE scheme for LSSS matrix from lattices in this work. The prior lattice-based ABE scheme for LSSS matrix constructed a large virtual encryption matrix to embed the LSSS matrix in secret key. We use a completely different but common method in lattice-based encryption schemes to achieve the same task. Moreover, we prove that our scheme is secure against chosen plaintext attack in the selective security model under the Learning with Errors (LWE) assumptions.","PeriodicalId":304958,"journal":{"name":"2017 13th International Conference on Computational Intelligence and Security (CIS)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 13th International Conference on Computational Intelligence and Security (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2017.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Attribute-Based Encryption (ABE) schemes show unprecedented flexibility and expressiveness through the introduction of access policies. Compared to ABE schemes for thresholds or circuits from lattices, Linear Secret Sharing Schemes (LSSS) matrix-based ABE is more difficult to design for its abstract mathematical structure. We propose an ABE scheme for LSSS matrix from lattices in this work. The prior lattice-based ABE scheme for LSSS matrix constructed a large virtual encryption matrix to embed the LSSS matrix in secret key. We use a completely different but common method in lattice-based encryption schemes to achieve the same task. Moreover, we prove that our scheme is secure against chosen plaintext attack in the selective security model under the Learning with Errors (LWE) assumptions.
基于矩阵的基于格属性的LSSS加密
基于属性的加密(ABE)方案通过引入访问策略显示出前所未有的灵活性和表现力。与基于阈值和栅格电路的ABE方案相比,基于线性秘密共享方案(LSSS)的ABE方案由于其抽象的数学结构而更加难以设计。本文提出了一种基于格的LSSS矩阵的ABE格式。先前的基于格的LSSS矩阵ABE方案构造了一个大的虚拟加密矩阵,将LSSS矩阵嵌入到密钥中。我们在基于格的加密方案中使用一种完全不同但通用的方法来实现相同的任务。此外,我们证明了在有错误学习(LWE)假设下的选择安全模型中,我们的方案对选择明文攻击是安全的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信