The learning analytics cycle: closing the loop effectively

D. Clow
{"title":"The learning analytics cycle: closing the loop effectively","authors":"D. Clow","doi":"10.1145/2330601.2330636","DOIUrl":null,"url":null,"abstract":"This paper develops Campbell and Oblinger's [4] five-step model of learning analytics (Capture, Report, Predict, Act, Refine) and other theorisations of the field, and draws on broader educational theory (including Kolb and Schön) to articulate an incrementally more developed, explicit and theoretically-grounded Learning Analytics Cycle. This cycle conceptualises successful learning analytics work as four linked steps: learners (1) generating data (2) that is used to produce metrics, analytics or visualisations (3). The key step is 'closing the loop' by feeding back this product to learners through one or more interventions (4). This paper seeks to begin to place learning analytics practice on a base of established learning theory, and draws several implications from this theory for the improvement of learning analytics projects. These include speeding up or shortening the cycle so feedback happens more quickly, and widening the audience for feedback (in particular, considering learners and teachers as audiences for analytics) so that it can have a larger impact.","PeriodicalId":311750,"journal":{"name":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"374","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Learning Analytics and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2330601.2330636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 374

Abstract

This paper develops Campbell and Oblinger's [4] five-step model of learning analytics (Capture, Report, Predict, Act, Refine) and other theorisations of the field, and draws on broader educational theory (including Kolb and Schön) to articulate an incrementally more developed, explicit and theoretically-grounded Learning Analytics Cycle. This cycle conceptualises successful learning analytics work as four linked steps: learners (1) generating data (2) that is used to produce metrics, analytics or visualisations (3). The key step is 'closing the loop' by feeding back this product to learners through one or more interventions (4). This paper seeks to begin to place learning analytics practice on a base of established learning theory, and draws several implications from this theory for the improvement of learning analytics projects. These include speeding up or shortening the cycle so feedback happens more quickly, and widening the audience for feedback (in particular, considering learners and teachers as audiences for analytics) so that it can have a larger impact.
学习分析周期:有效地闭合循环
本文发展了Campbell和Oblinger[4]的学习分析五步模型(捕获、报告、预测、行动、改进)和该领域的其他理论,并借鉴了更广泛的教育理论(包括Kolb和Schön),以阐明一个逐步发展的、明确的、理论基础的学习分析周期。这个循环将成功的学习分析工作概念化为四个相互关联的步骤:学习者(1)生成数据(2),用于生成指标、分析或可视化(3)。关键步骤是“闭环”,通过一个或多个干预将该产品反馈给学习者(4)。本文试图开始将学习分析实践置于已建立的学习理论的基础上,并从该理论中得出改进学习分析项目的几个含义。这些措施包括加快或缩短反馈周期,以便更快地得到反馈,扩大反馈的受众(特别是将学习者和教师视为分析的受众),以便产生更大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信