Motion Statistic Based Local Homography Transformation Estimation for Mismatch Removal

Songlin Du, T. Ikenaga
{"title":"Motion Statistic Based Local Homography Transformation Estimation for Mismatch Removal","authors":"Songlin Du, T. Ikenaga","doi":"10.1145/3348488.3348496","DOIUrl":null,"url":null,"abstract":"Accurately establishing pixel-level correspondence between images taken from same objects is an essential problem in many computer vision applications, such as 3D reconstruction, simultaneous localization and mapping (SLAM), and augmented reality (AR). Existing local feature descriptor based image matching approaches are unable to avoid mismatches which cause negative effects to the above mentioned applications. This paper proposes a motion statistic based local homography transformation estimation method for removing mismatches. The proposed method estimates local homography transformations between the grids in a pair of images and then classifies each match as correct or incorrect by checking whether it is consisting with the corresponding local homography transformation or not. Experimental results on the widely used Oxford affine image dataset show that the proposed approach finds out more potential correct matches than the existing state-of-the-art method.","PeriodicalId":420290,"journal":{"name":"International Conference on Artificial Intelligence and Virtual Reality","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Artificial Intelligence and Virtual Reality","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3348488.3348496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurately establishing pixel-level correspondence between images taken from same objects is an essential problem in many computer vision applications, such as 3D reconstruction, simultaneous localization and mapping (SLAM), and augmented reality (AR). Existing local feature descriptor based image matching approaches are unable to avoid mismatches which cause negative effects to the above mentioned applications. This paper proposes a motion statistic based local homography transformation estimation method for removing mismatches. The proposed method estimates local homography transformations between the grids in a pair of images and then classifies each match as correct or incorrect by checking whether it is consisting with the corresponding local homography transformation or not. Experimental results on the widely used Oxford affine image dataset show that the proposed approach finds out more potential correct matches than the existing state-of-the-art method.
基于运动统计的局部单应变换估计去错
在许多计算机视觉应用中,准确地建立来自同一物体的图像之间的像素级对应关系是一个基本问题,例如3D重建,同步定位和地图绘制(SLAM)和增强现实(AR)。现有的基于局部特征描述符的图像匹配方法无法避免不匹配,从而对上述应用产生负面影响。提出了一种基于运动统计的局部单应变换估计方法。该方法估计一对图像中网格之间的局部单应性变换,然后通过检查匹配是否符合相应的局部单应性变换来对匹配进行正确或错误的分类。在广泛使用的牛津仿射图像数据集上的实验结果表明,该方法比现有的最先进的方法找到了更多的潜在正确匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信