Generalized hypergeometric functions and intersection theory for Feynman integrals

Samuel Abreu, Ruth Britto, C. Duhr, E. Gardi, J. Matthew
{"title":"Generalized hypergeometric functions and intersection theory for Feynman integrals","authors":"Samuel Abreu, Ruth Britto, C. Duhr, E. Gardi, J. Matthew","doi":"10.22323/1.375.0067","DOIUrl":null,"url":null,"abstract":"Feynman integrals that have been evaluated in dimensional regularization can be written in terms of generalized hypergeometric functions. It is well known that properties of these functions are revealed in the framework of intersection theory. We propose a new application of intersection theory to construct a coaction on generalized hypergeometric functions. When applied to dimensionally regularized Feynman integrals, this coaction reproduces the coaction on multiple polylogarithms order by order in the parameter of dimensional regularization.","PeriodicalId":440413,"journal":{"name":"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)","volume":"617 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 14th International Symposium on Radiative Corrections — PoS(RADCOR2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22323/1.375.0067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Feynman integrals that have been evaluated in dimensional regularization can be written in terms of generalized hypergeometric functions. It is well known that properties of these functions are revealed in the framework of intersection theory. We propose a new application of intersection theory to construct a coaction on generalized hypergeometric functions. When applied to dimensionally regularized Feynman integrals, this coaction reproduces the coaction on multiple polylogarithms order by order in the parameter of dimensional regularization.
费曼积分的广义超几何函数与交点理论
在维度正则化中计算过的费曼积分可以用广义超几何函数来表示。众所周知,这些函数的性质是在交点理论的框架下揭示出来的。提出了一种新的交点理论应用于构造广义超几何函数上的协数。当应用于维度正则化的费曼积分时,这种协同作用可以逐级再现维度正则化参数中多个多对数上的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信