Automatic tuning of a fuzzy batch job scheduler using a genetic algorithm

A. Shaout, P. McAuliffe
{"title":"Automatic tuning of a fuzzy batch job scheduler using a genetic algorithm","authors":"A. Shaout, P. McAuliffe","doi":"10.1109/NAFIPS.1999.781671","DOIUrl":null,"url":null,"abstract":"The paper presents the application of a genetic algorithm to automatically tune a fuzzy batch job scheduler for maximum throughput. This genetic algorithm varies fuzzy membership functions, fuzzy rules and resource limits on processors to optimize for maximum job throughput and load balancing across processors of a distributed system. Unlike most research done in the realm of load balancing and job scheduling, the paper presents an algorithm that has been evaluated in a production processing environment rather than in simulation only.","PeriodicalId":335957,"journal":{"name":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"18th International Conference of the North American Fuzzy Information Processing Society - NAFIPS (Cat. No.99TH8397)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.1999.781671","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The paper presents the application of a genetic algorithm to automatically tune a fuzzy batch job scheduler for maximum throughput. This genetic algorithm varies fuzzy membership functions, fuzzy rules and resource limits on processors to optimize for maximum job throughput and load balancing across processors of a distributed system. Unlike most research done in the realm of load balancing and job scheduling, the paper presents an algorithm that has been evaluated in a production processing environment rather than in simulation only.
使用遗传算法的模糊批处理作业调度器自动调优
本文应用遗传算法对模糊批处理调度程序进行自动调优,以获得最大吞吐量。该遗传算法通过改变处理器上的模糊隶属函数、模糊规则和资源限制来优化分布式系统的最大作业吞吐量和负载平衡。与大多数在负载平衡和作业调度领域所做的研究不同,本文提出的算法已经在生产处理环境中进行了评估,而不仅仅是在模拟中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信