Clustering Vertices in Weighted Graphs

D. Wijaya, S. Bressan
{"title":"Clustering Vertices in Weighted Graphs","authors":"D. Wijaya, S. Bressan","doi":"10.4018/978-1-61350-053-8.ch012","DOIUrl":null,"url":null,"abstract":"Clustering is the unsupervised process of discovering natural clusters so that objects within the same cluster are similar and objects from different clusters are dissimilar. In clustering, if similarity relations between objects are represented as a simple, weighted graph where objects are vertices and similarities between objects are weights of edges; clustering reduces to the problem of graph clustering. A natural notion of graph clustering is the separation of sparsely connected dense sub graphs from each other based on the notion of intra-cluster density vs. inter-cluster sparseness. In this chapter, we overview existing graph algorithms for clustering vertices in weighted graphs: Minimum Spanning Tree (MST) clustering, Markov clustering, and Star clustering. This includes the variants of Star clustering, MST clustering and Ricochet.","PeriodicalId":227251,"journal":{"name":"Graph Data Management","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Graph Data Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-61350-053-8.ch012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Clustering is the unsupervised process of discovering natural clusters so that objects within the same cluster are similar and objects from different clusters are dissimilar. In clustering, if similarity relations between objects are represented as a simple, weighted graph where objects are vertices and similarities between objects are weights of edges; clustering reduces to the problem of graph clustering. A natural notion of graph clustering is the separation of sparsely connected dense sub graphs from each other based on the notion of intra-cluster density vs. inter-cluster sparseness. In this chapter, we overview existing graph algorithms for clustering vertices in weighted graphs: Minimum Spanning Tree (MST) clustering, Markov clustering, and Star clustering. This includes the variants of Star clustering, MST clustering and Ricochet.
加权图中的聚类顶点
聚类是发现自然聚类的无监督过程,使得同一聚类中的对象相似而不同聚类中的对象不相似。在聚类中,如果对象之间的相似性关系被表示为一个简单的加权图,其中对象是顶点,对象之间的相似性是边的权重;聚类问题归结为图聚类问题。图聚类的一个自然概念是基于簇内密度和簇间稀疏性的概念,将稀疏连接的密集子图彼此分离。在本章中,我们概述了现有的用于加权图中聚类顶点的图算法:最小生成树(MST)聚类,马尔可夫聚类和星形聚类。这包括星形聚类、MST聚类和跳跳的变体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信