Continuous mixed p-norm adaptive algorithm with reweighted L0-norm constraint

Sihai Guan, Zhi Li, Hairu Zhang
{"title":"Continuous mixed p-norm adaptive algorithm with reweighted L0-norm constraint","authors":"Sihai Guan, Zhi Li, Hairu Zhang","doi":"10.1109/EIIS.2017.8298617","DOIUrl":null,"url":null,"abstract":"A continuous mixed p-norm adaptive algorithm with reweighted L0-norm constraint (RL0-CMPN) is proposed for sparse system identification. The RL0-CMPN algorithm makes full use of the advantages of the different norm. This algorithm can solve large coefficient update spread problem and reduce the slow-down effect. Besides, it is a continuous mixed p-norm adaptive algorithm. The computation complexity of the algorithm is discussed. Finally, the algorithm is compared with some exist adaptive filtering algorithms in different signal-tonoise ratio (SNR). Theoretical analysis combined with experimental simulations show that the algorithm can achieve better tracking speed, lower steady state error and anti-noise performance.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298617","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A continuous mixed p-norm adaptive algorithm with reweighted L0-norm constraint (RL0-CMPN) is proposed for sparse system identification. The RL0-CMPN algorithm makes full use of the advantages of the different norm. This algorithm can solve large coefficient update spread problem and reduce the slow-down effect. Besides, it is a continuous mixed p-norm adaptive algorithm. The computation complexity of the algorithm is discussed. Finally, the algorithm is compared with some exist adaptive filtering algorithms in different signal-tonoise ratio (SNR). Theoretical analysis combined with experimental simulations show that the algorithm can achieve better tracking speed, lower steady state error and anti-noise performance.
具有重加权l0 -范数约束的连续混合p-范数自适应算法
提出了一种带有重加权l0 -范数约束的连续混合p-范数自适应算法(RL0-CMPN)用于稀疏系统辨识。RL0-CMPN算法充分利用了不同范数的优点。该算法解决了大系数更新扩散问题,降低了慢速效应。它是一种连续混合p范数自适应算法。讨论了该算法的计算复杂度。最后,在不同信噪比下,将该算法与现有的一些自适应滤波算法进行了比较。理论分析与实验仿真相结合表明,该算法具有较高的跟踪速度、较低的稳态误差和抗噪声性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信