Robot identification using fractional subspace method

Hamid Behzad, H. T. Shandiz, A. Noori, T. Abrishami
{"title":"Robot identification using fractional subspace method","authors":"Hamid Behzad, H. T. Shandiz, A. Noori, T. Abrishami","doi":"10.1109/ICCIAUTOM.2011.6356831","DOIUrl":null,"url":null,"abstract":"This paper is concerned with fractional identification of state space model of continuous time MIMO systems. The methodology used in this paper involves a continuous-time fractional operator allowing to find fractional derivatives of the stochastic input - output data which are treated in time domain and identifying the state space matrices of the system using QR factorization. There are many advantages in describing a physical system using fractional CT models in that the dynamic behavior of the system is, in actuality, inherently fractional. The efficacy of the approach is examined by comparing with other approaches using integer identification.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper is concerned with fractional identification of state space model of continuous time MIMO systems. The methodology used in this paper involves a continuous-time fractional operator allowing to find fractional derivatives of the stochastic input - output data which are treated in time domain and identifying the state space matrices of the system using QR factorization. There are many advantages in describing a physical system using fractional CT models in that the dynamic behavior of the system is, in actuality, inherently fractional. The efficacy of the approach is examined by comparing with other approaches using integer identification.
基于分数子空间的机器人识别方法
研究了连续时间MIMO系统状态空间模型的分数辨识问题。本文使用的方法包括一个连续时间分数阶算子,允许在时域处理随机输入输出数据的分数阶导数,并使用QR分解识别系统的状态空间矩阵。使用分数CT模型描述物理系统有许多优点,因为系统的动态行为实际上本质上是分数的。通过与其他整数识别方法的比较,验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信