Enhanced GPU Resource Utilization through Fairness-aware Task Scheduling

Ayman Tarakji, Alexander Gladis, Tarek Anwar, R. Leupers
{"title":"Enhanced GPU Resource Utilization through Fairness-aware Task Scheduling","authors":"Ayman Tarakji, Alexander Gladis, Tarek Anwar, R. Leupers","doi":"10.1109/Trustcom.2015.611","DOIUrl":null,"url":null,"abstract":"Underutilization as well as oversubscription of processing resources are common problems in current accelerator-based computing systems. Facing these challenges will require intelligent algorithms for scheduling parallel workloads on accelerators. The general aim of this paper is to achieve fair distribution of the tremendous computation power of modern devices among running applications towards enhancing resource utilization. Given a set of real applications, we evaluate our model and explore the advantages of multi-tasking and concurrency on current GPUs.","PeriodicalId":277092,"journal":{"name":"2015 IEEE Trustcom/BigDataSE/ISPA","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Trustcom/BigDataSE/ISPA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/Trustcom.2015.611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Underutilization as well as oversubscription of processing resources are common problems in current accelerator-based computing systems. Facing these challenges will require intelligent algorithms for scheduling parallel workloads on accelerators. The general aim of this paper is to achieve fair distribution of the tremendous computation power of modern devices among running applications towards enhancing resource utilization. Given a set of real applications, we evaluate our model and explore the advantages of multi-tasking and concurrency on current GPUs.
通过公平感知任务调度提高GPU资源利用率
在当前基于加速器的计算系统中,处理资源的利用不足和超额认购是常见的问题。面对这些挑战将需要智能算法来调度加速器上的并行工作负载。本文的总体目标是实现现代设备巨大的计算能力在运行中的应用程序之间的公平分配,以提高资源利用率。给出了一组实际应用,我们评估了我们的模型,并探索了当前gpu上多任务和并发的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信