Chaotic multiagent system approach for MRF-based image segmentation

K. Melkemi, M. Batouche, S. Foufou
{"title":"Chaotic multiagent system approach for MRF-based image segmentation","authors":"K. Melkemi, M. Batouche, S. Foufou","doi":"10.1109/ISPA.2005.195421","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new chaotic approach for image segmentation based on multiagent system (MAS). We consider a set of segmentation agents organized around a coordinator agent. Each segmentation agent performs iterated conditional modes (ICM) starting from its own initial image created using a chaotic mapping. The coordinator agent diversifies the initial images using a crossover and a chaotic mutation operators. The efficiency of our chaotic MAS approach is shown through some experimental results.","PeriodicalId":238993,"journal":{"name":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2005.195421","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we propose a new chaotic approach for image segmentation based on multiagent system (MAS). We consider a set of segmentation agents organized around a coordinator agent. Each segmentation agent performs iterated conditional modes (ICM) starting from its own initial image created using a chaotic mapping. The coordinator agent diversifies the initial images using a crossover and a chaotic mutation operators. The efficiency of our chaotic MAS approach is shown through some experimental results.
基于磁共振成像的混沌多智能体图像分割方法
本文提出了一种新的基于多智能体系统(MAS)的混沌图像分割方法。我们考虑一组围绕协调代理组织的分段代理。每个分割代理从使用混沌映射创建的自己的初始图像开始执行迭代条件模式(ICM)。协调代理使用交叉和混沌变异算子使初始图像多样化。实验结果表明了混沌MAS方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信