Efficient Graph Learning for Anomaly Detection Systems

F. Febrinanto
{"title":"Efficient Graph Learning for Anomaly Detection Systems","authors":"F. Febrinanto","doi":"10.1145/3539597.3572990","DOIUrl":null,"url":null,"abstract":"Anomaly detection plays a significant role in preventing from detrimental effects of abnormalities. It brings many benefits in real-world sectors ranging from transportation, finance to cybersecurity. In reality, millions of data do not stand independently, but they might be connected to each other and form graph or network data. A more advanced technique, named graph anomaly detection, is required to model that data type. The current works of graph anomaly detection have achieved state-of-the-art performance compared to regular anomaly detection. However, most models ignore the efficiency aspect, leading to several problems like technical bottlenecks. This project mainly focuses on improving the efficiency aspect of graph anomaly detection while maintaining its performance.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3572990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Anomaly detection plays a significant role in preventing from detrimental effects of abnormalities. It brings many benefits in real-world sectors ranging from transportation, finance to cybersecurity. In reality, millions of data do not stand independently, but they might be connected to each other and form graph or network data. A more advanced technique, named graph anomaly detection, is required to model that data type. The current works of graph anomaly detection have achieved state-of-the-art performance compared to regular anomaly detection. However, most models ignore the efficiency aspect, leading to several problems like technical bottlenecks. This project mainly focuses on improving the efficiency aspect of graph anomaly detection while maintaining its performance.
异常检测系统的高效图学习
异常检测在防止异常产生不利影响方面起着重要作用。它为现实世界的交通、金融和网络安全等领域带来了许多好处。在现实中,数以百万计的数据并不是独立存在的,它们可能相互连接,形成图形或网络数据。需要一种更高级的技术,称为图异常检测,来对该数据类型建模。与常规异常检测相比,目前的图异常检测工作已经达到了最先进的性能。然而,大多数模型忽略了效率方面,导致了一些问题,如技术瓶颈。本课题主要致力于在保持图形异常检测性能的同时,提高其检测效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信