{"title":"Efficient Graph Learning for Anomaly Detection Systems","authors":"F. Febrinanto","doi":"10.1145/3539597.3572990","DOIUrl":null,"url":null,"abstract":"Anomaly detection plays a significant role in preventing from detrimental effects of abnormalities. It brings many benefits in real-world sectors ranging from transportation, finance to cybersecurity. In reality, millions of data do not stand independently, but they might be connected to each other and form graph or network data. A more advanced technique, named graph anomaly detection, is required to model that data type. The current works of graph anomaly detection have achieved state-of-the-art performance compared to regular anomaly detection. However, most models ignore the efficiency aspect, leading to several problems like technical bottlenecks. This project mainly focuses on improving the efficiency aspect of graph anomaly detection while maintaining its performance.","PeriodicalId":227804,"journal":{"name":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3539597.3572990","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Anomaly detection plays a significant role in preventing from detrimental effects of abnormalities. It brings many benefits in real-world sectors ranging from transportation, finance to cybersecurity. In reality, millions of data do not stand independently, but they might be connected to each other and form graph or network data. A more advanced technique, named graph anomaly detection, is required to model that data type. The current works of graph anomaly detection have achieved state-of-the-art performance compared to regular anomaly detection. However, most models ignore the efficiency aspect, leading to several problems like technical bottlenecks. This project mainly focuses on improving the efficiency aspect of graph anomaly detection while maintaining its performance.