Classification of Interfering Elements in the Meteorological Images by Deep Neural Networks

Lukáš Urbaník, Lukáš Ivica, R. Forgác, Miloš Očkay, Irina Malkin Ondík
{"title":"Classification of Interfering Elements in the Meteorological Images by Deep Neural Networks","authors":"Lukáš Urbaník, Lukáš Ivica, R. Forgác, Miloš Očkay, Irina Malkin Ondík","doi":"10.23919/NTSP54843.2022.9920418","DOIUrl":null,"url":null,"abstract":"Presented work summarizes selected Convolutional Neural Networks classification of interfering elements in the meteorological images. Interfering elements, such as raindrops and insect adhered to camera lens, bright sun and other elements limit the process of automatic remote estimation of visibility at airports. We have experimented with three groups of pretrained neural networks. Namely we used AlexNet, DenseNet and ResNet. DenseNet169 classification appears to be a suitable solution. All the examined classification metrics, under the conditions of a classification threshold of 99% and above, indicated values above 90%. The paper also presents real deployment of classification models for full high definition camera images.","PeriodicalId":103310,"journal":{"name":"2022 New Trends in Signal Processing (NTSP)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 New Trends in Signal Processing (NTSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/NTSP54843.2022.9920418","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Presented work summarizes selected Convolutional Neural Networks classification of interfering elements in the meteorological images. Interfering elements, such as raindrops and insect adhered to camera lens, bright sun and other elements limit the process of automatic remote estimation of visibility at airports. We have experimented with three groups of pretrained neural networks. Namely we used AlexNet, DenseNet and ResNet. DenseNet169 classification appears to be a suitable solution. All the examined classification metrics, under the conditions of a classification threshold of 99% and above, indicated values above 90%. The paper also presents real deployment of classification models for full high definition camera images.
基于深度神经网络的气象图像干扰要素分类
提出的工作总结了选择的卷积神经网络分类的干扰因素在气象图像。干扰因素,如雨滴和昆虫粘附在相机镜头,明亮的太阳等因素限制了机场能见度的自动远程估计过程。我们用三组预训练的神经网络做了实验。即我们使用AlexNet, DenseNet和ResNet。DenseNet169分类似乎是一个合适的解决方案。在分类阈值为99%及以上的条件下,所检查的所有分类指标的值均大于90%。本文还介绍了全高清相机图像分类模型的实际部署。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信