{"title":"Dynamic analysis of frequency-controlled electronic ballasts","authors":"Yan Yin, R. Zane, R. Erickson","doi":"10.1109/IAS.2002.1044172","DOIUrl":null,"url":null,"abstract":"This paper presents analytical tools aimed at improving and simplifying the development of frequency-controlled dimming electronic ballasts. A modified phasor transformation is proposed that converts a frequency-modulated signal into an equivalent time-varying phasor. The proposed transformation is applied to develop a complete small-signal phasor model of the LCC resonant ballast, which explicitly models the effect of the frequency modulation on the envelopes of the outputs. A Spice-compatible implementation of the model is presented that facilitates AC analysis of the ballast in addition to envelope transient simulation, and is verified through comparison of experimental and simulation results. A closed-form solution of the control-to-output current transfer function for the ballast-resistor system is presented, along with key observations of the pole locations and low-frequency gain that facilitate simple and intuitive compensator design. Finally a design example for the feedback controller is given to verify the theoretical analysis.","PeriodicalId":202482,"journal":{"name":"Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2002 IEEE Industry Applications Conference. 37th IAS Annual Meeting (Cat. No.02CH37344)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAS.2002.1044172","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18
Abstract
This paper presents analytical tools aimed at improving and simplifying the development of frequency-controlled dimming electronic ballasts. A modified phasor transformation is proposed that converts a frequency-modulated signal into an equivalent time-varying phasor. The proposed transformation is applied to develop a complete small-signal phasor model of the LCC resonant ballast, which explicitly models the effect of the frequency modulation on the envelopes of the outputs. A Spice-compatible implementation of the model is presented that facilitates AC analysis of the ballast in addition to envelope transient simulation, and is verified through comparison of experimental and simulation results. A closed-form solution of the control-to-output current transfer function for the ballast-resistor system is presented, along with key observations of the pole locations and low-frequency gain that facilitate simple and intuitive compensator design. Finally a design example for the feedback controller is given to verify the theoretical analysis.