Speech Emotion Recognition using GhostVLAD and Sentiment Metric Learning

B. Mocanu, Ruxandra Tapu
{"title":"Speech Emotion Recognition using GhostVLAD and Sentiment Metric Learning","authors":"B. Mocanu, Ruxandra Tapu","doi":"10.1109/ISPA52656.2021.9552068","DOIUrl":null,"url":null,"abstract":"In this paper, we introduce a novel deep learning-based speech emotion recognition method. The proposed approach exploits a convolutional neural network (CNN), enriched with a GhostVLAD feature aggregation layer. The resulting representation adjusts the contribution of each spectrogram segments to the final class prototype representation and is used for trainable and discriminative clustering purposes. In addition, we introduce a modified triplet loss function which integrates the relations between the various emotional patterns. The experimental evaluation, carried out on RAVDESS and CREMA-D datasets validates the proposed methodology, which yields emotion recognition rates superior to 83% and 64%, respectively. The comparative evaluation shows that the proposed approach outperforms state of the art techniques, with gains in accuracy of more than 3%.","PeriodicalId":131088,"journal":{"name":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 12th International Symposium on Image and Signal Processing and Analysis (ISPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA52656.2021.9552068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, we introduce a novel deep learning-based speech emotion recognition method. The proposed approach exploits a convolutional neural network (CNN), enriched with a GhostVLAD feature aggregation layer. The resulting representation adjusts the contribution of each spectrogram segments to the final class prototype representation and is used for trainable and discriminative clustering purposes. In addition, we introduce a modified triplet loss function which integrates the relations between the various emotional patterns. The experimental evaluation, carried out on RAVDESS and CREMA-D datasets validates the proposed methodology, which yields emotion recognition rates superior to 83% and 64%, respectively. The comparative evaluation shows that the proposed approach outperforms state of the art techniques, with gains in accuracy of more than 3%.
基于GhostVLAD和情感度量学习的语音情感识别
本文提出了一种新的基于深度学习的语音情感识别方法。该方法利用卷积神经网络(CNN),丰富了GhostVLAD特征聚合层。所得的表示调整了每个谱图段对最终类原型表示的贡献,并用于可训练和判别聚类目的。此外,我们还引入了一个改进的三重态损失函数,该函数集成了各种情绪模式之间的关系。在RAVDESS和CREMA-D数据集上进行的实验评估验证了所提出的方法,其情绪识别率分别优于83%和64%。对比评估表明,所提出的方法优于目前的技术,精度提高了3%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信