{"title":"Valuations in Nilpotent Minimum Logic","authors":"P. Codara, Diego Valota","doi":"10.1109/ISMVL.2015.19","DOIUrl":null,"url":null,"abstract":"The Euler characteristic can be defined as a special kind of valuation on finite distributive lattices. This work begins with some brief consideration on the role of the Euler characteristic on NM algebras, the algebraic counterpart of Nilpotent Minimum logic. Then, we introduce a new valuation, a modified version of the Euler characteristic we call idempotent Euler characteristic. We show that the new valuation encodes information about the formulas in NM propositional logic.","PeriodicalId":118417,"journal":{"name":"2015 IEEE International Symposium on Multiple-Valued Logic","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multiple-Valued Logic","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISMVL.2015.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The Euler characteristic can be defined as a special kind of valuation on finite distributive lattices. This work begins with some brief consideration on the role of the Euler characteristic on NM algebras, the algebraic counterpart of Nilpotent Minimum logic. Then, we introduce a new valuation, a modified version of the Euler characteristic we call idempotent Euler characteristic. We show that the new valuation encodes information about the formulas in NM propositional logic.