Imputing missing electroencephalography data using graph signal processing

Alejandro J. Weinstein
{"title":"Imputing missing electroencephalography data using graph signal processing","authors":"Alejandro J. Weinstein","doi":"10.1117/12.2669735","DOIUrl":null,"url":null,"abstract":"Graph Signal Processing (GSP) is a framework for analyzing signals defined over a graph. Considering the electrodes used to record the electroencephalogram (EEG) as a sensor network makes it possible to use GSP to analyze EEG signals. Using the graph over which the signal is defined allows one to take advantage of a signal structure that is ignored by classic signal processing approaches. However, there are many details about how to use GSP to analyze the EEG that are not studied in the literature. Here we show an example of how to impute missing EEG data using GSP. We show that GSP allows reconstructing EEG missing data with a lower error than a classic approach based on radial basis functions, confirming that the underlying graph over a graph over which the signal is defined contains relevant information that can be exploited to improve a given signal processing task. By studying two approaches for building the graph (k-nearest neighbors and a thresholded Gaussian kernel) and the effect of its parameter, we highlight the importance of building the graph appropriately. These results show the potential of incorporating GPS techniques into the EEG processing pipeline.","PeriodicalId":147201,"journal":{"name":"Symposium on Medical Information Processing and Analysis","volume":"1928 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symposium on Medical Information Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2669735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Graph Signal Processing (GSP) is a framework for analyzing signals defined over a graph. Considering the electrodes used to record the electroencephalogram (EEG) as a sensor network makes it possible to use GSP to analyze EEG signals. Using the graph over which the signal is defined allows one to take advantage of a signal structure that is ignored by classic signal processing approaches. However, there are many details about how to use GSP to analyze the EEG that are not studied in the literature. Here we show an example of how to impute missing EEG data using GSP. We show that GSP allows reconstructing EEG missing data with a lower error than a classic approach based on radial basis functions, confirming that the underlying graph over a graph over which the signal is defined contains relevant information that can be exploited to improve a given signal processing task. By studying two approaches for building the graph (k-nearest neighbors and a thresholded Gaussian kernel) and the effect of its parameter, we highlight the importance of building the graph appropriately. These results show the potential of incorporating GPS techniques into the EEG processing pipeline.
用图信号处理方法输入缺失的脑电图数据
图信号处理(GSP)是一个用于分析在图上定义的信号的框架。将记录脑电图的电极作为一个传感器网络,使得GSP分析脑电图信号成为可能。使用定义信号的图形可以利用经典信号处理方法所忽略的信号结构。然而,关于如何使用GSP分析脑电图,有很多细节在文献中没有研究。在这里,我们展示了一个如何使用GSP来计算缺失的脑电数据的例子。我们表明,GSP允许以比基于径向基函数的经典方法更低的误差重建EEG缺失数据,确认了定义信号的图上的底层图包含可用于改进给定信号处理任务的相关信息。通过研究构建图的两种方法(k近邻和阈值高斯核)及其参数的影响,我们强调了适当构建图的重要性。这些结果显示了将GPS技术纳入脑电图处理流程的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信