Analyzing Intraductal Papillary Mucinous Neoplasms Using Artificial Neural Network Methodologic Triangulation

S. Walczak, J. Permuth, V. Velanovich
{"title":"Analyzing Intraductal Papillary Mucinous Neoplasms Using Artificial Neural Network Methodologic Triangulation","authors":"S. Walczak, J. Permuth, V. Velanovich","doi":"10.4018/ijhisi.2019100102","DOIUrl":null,"url":null,"abstract":"Intraductal papillary mucinous neoplasms (IPMN) are a type of mucinous pancreatic cyst. IPMN have been shown to be pre-malignant precursors to pancreatic cancer, which has an extremely high mortality rate with average survival less than 1 year. The purpose of this analysis is to utilize methodological triangulation using artificial neural networks and regression to examine the impact and effectiveness of a collection of variables believed to be predictive of malignant IPMN pathology. Results indicate that the triangulation is effective in both finding a new predictive variable and possibly reducing the number of variables needed for predicting if an IPMN is malignant or benign.","PeriodicalId":101861,"journal":{"name":"Int. J. Heal. Inf. Syst. Informatics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Heal. Inf. Syst. Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijhisi.2019100102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Intraductal papillary mucinous neoplasms (IPMN) are a type of mucinous pancreatic cyst. IPMN have been shown to be pre-malignant precursors to pancreatic cancer, which has an extremely high mortality rate with average survival less than 1 year. The purpose of this analysis is to utilize methodological triangulation using artificial neural networks and regression to examine the impact and effectiveness of a collection of variables believed to be predictive of malignant IPMN pathology. Results indicate that the triangulation is effective in both finding a new predictive variable and possibly reducing the number of variables needed for predicting if an IPMN is malignant or benign.
用人工神经网络三角法分析导管内乳头状粘液瘤
导管内乳头状粘液瘤(IPMN)是胰腺粘液囊肿的一种。IPMN已被证明是胰腺癌的恶性前体,胰腺癌的死亡率极高,平均生存期不到1年。本分析的目的是利用人工神经网络和回归的方法学三角测量来检查被认为可以预测恶性IPMN病理的一系列变量的影响和有效性。结果表明,三角测量在发现新的预测变量和可能减少预测IPMN是恶性还是良性所需的变量数量方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信