NeLF: Neural Light-transport Field for Portrait View Synthesis and Relighting

Tiancheng Sun, Kai-En Lin, Sai Bi, Zexiang Xu, R. Ramamoorthi
{"title":"NeLF: Neural Light-transport Field for Portrait View Synthesis and Relighting","authors":"Tiancheng Sun, Kai-En Lin, Sai Bi, Zexiang Xu, R. Ramamoorthi","doi":"10.2312/sr.20211299","DOIUrl":null,"url":null,"abstract":"Human portraits exhibit various appearances when observed from different views under different lighting conditions. We can easily imagine how the face will look like in another setup, but computer algorithms still fail on this problem given limited observations. To this end, we present a system for portrait view synthesis and relighting: given multiple portraits, we use a neural network to predict the light-transport field in 3D space, and from the predicted Neural Light-transport Field (NeLF) produce a portrait from a new camera view under a new environmental lighting. Our system is trained on a large number of synthetic models, and can generalize to different synthetic and real portraits under various lighting conditions. Our method achieves simultaneous view synthesis and relighting given multi-view portraits as the input, and achieves state-of-the-art results.","PeriodicalId":363391,"journal":{"name":"Eurographics Symposium on Rendering","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Symposium on Rendering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/sr.20211299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

Abstract

Human portraits exhibit various appearances when observed from different views under different lighting conditions. We can easily imagine how the face will look like in another setup, but computer algorithms still fail on this problem given limited observations. To this end, we present a system for portrait view synthesis and relighting: given multiple portraits, we use a neural network to predict the light-transport field in 3D space, and from the predicted Neural Light-transport Field (NeLF) produce a portrait from a new camera view under a new environmental lighting. Our system is trained on a large number of synthetic models, and can generalize to different synthetic and real portraits under various lighting conditions. Our method achieves simultaneous view synthesis and relighting given multi-view portraits as the input, and achieves state-of-the-art results.
用于人像视图合成和重光照的神经光传输场
在不同的光线条件下,从不同的角度观察人像,会呈现出不同的面貌。我们可以很容易地想象出人脸在另一种设置中的样子,但由于观察有限,计算机算法仍然无法解决这个问题。为此,我们提出了一个肖像视图合成和重照明系统:给定多个肖像,我们使用神经网络来预测3D空间中的光传输场,并从预测的神经光传输场(NeLF)产生新的相机视图下的肖像在新的环境照明下。我们的系统是在大量的合成模型上训练的,可以泛化到不同光照条件下的不同合成和真实人像。我们的方法实现了同时视图合成和重新照明给定的多视图肖像作为输入,并取得了最先进的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信