{"title":"Data-Driven Detection of Phase Changes in Evolving Distribution Systems","authors":"Bethany D. Peña, Logan Blakely, M. Reno","doi":"10.1109/TPEC54980.2022.9750748","DOIUrl":null,"url":null,"abstract":"The installation of digital sensors, such as advanced meter infrastructure (AMI) meters, has provided the means to implement a wide variety of techniques to increase visibility into the distribution system, including the ability to calibrate the utility models using data-driven algorithms. One challenge in maintaining accurate and up-to-date distribution system models is identifying changes and event occurrences that happen during the year, such as customers who have changed phases due to maintenance or other events. This work proposes a method for the detection of phase change events that utilizes techniques from an existing phase identification algorithm. This work utilizes an ensemble step to obtain predicted phases for windows of data, therefore allowing the predicted phase of customers to be observed over time. The proposed algorithm was tested on four utility datasets as well as a synthetic dataset. The synthetic tests showed the algorithm was capable of accurately detecting true phase change events while limiting the number of false-positive events flagged. In addition, the algorithm was able to identify possible phase change events on two real datasets.","PeriodicalId":185211,"journal":{"name":"2022 IEEE Texas Power and Energy Conference (TPEC)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Texas Power and Energy Conference (TPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TPEC54980.2022.9750748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The installation of digital sensors, such as advanced meter infrastructure (AMI) meters, has provided the means to implement a wide variety of techniques to increase visibility into the distribution system, including the ability to calibrate the utility models using data-driven algorithms. One challenge in maintaining accurate and up-to-date distribution system models is identifying changes and event occurrences that happen during the year, such as customers who have changed phases due to maintenance or other events. This work proposes a method for the detection of phase change events that utilizes techniques from an existing phase identification algorithm. This work utilizes an ensemble step to obtain predicted phases for windows of data, therefore allowing the predicted phase of customers to be observed over time. The proposed algorithm was tested on four utility datasets as well as a synthetic dataset. The synthetic tests showed the algorithm was capable of accurately detecting true phase change events while limiting the number of false-positive events flagged. In addition, the algorithm was able to identify possible phase change events on two real datasets.