Cascaded Converter for Large-Scale Solar-BES System with Transformer Isolation

S. Karmakar, S. Yadav, Bhim Singh
{"title":"Cascaded Converter for Large-Scale Solar-BES System with Transformer Isolation","authors":"S. Karmakar, S. Yadav, Bhim Singh","doi":"10.1109/SeFet48154.2021.9375778","DOIUrl":null,"url":null,"abstract":"In this work a MW size voltage source converter (VSC) is switched at the fundamental frequency. This converter can attain eleven-level from cascaded H-bridge cells. The transformer isolation (11L-TCHB) is implemented with a battery energy storage (BES) that has a rating of 24MW/16SMWh. The BES is used in an 40MW solar PV plant for the support of active power under solar fluctuations. The TCHB-VSC and NAS batteries complement one another as TCHB enables the NAS container to be connected directly with its H-bridges for independent state-of-charge (SOC) control of the battery. The NAS-battery provides DC input source to TCHB VSC for staircase voltage waveform generation and enables NAS-BES to have high voltage integration with the grid. In addition, the fundamental switching gave high conversion efficiency and reduced switching stress over high-frequency schemes. This integrated system is designed and modeled to validate the performance under solar dynamics. Simulation results are discussed in detail to present a solar photovoltaic (SPV) system with improved power quality.","PeriodicalId":232560,"journal":{"name":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","volume":"51 Suppl 53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Sustainable Energy and Future Electric Transportation (SEFET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SeFet48154.2021.9375778","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work a MW size voltage source converter (VSC) is switched at the fundamental frequency. This converter can attain eleven-level from cascaded H-bridge cells. The transformer isolation (11L-TCHB) is implemented with a battery energy storage (BES) that has a rating of 24MW/16SMWh. The BES is used in an 40MW solar PV plant for the support of active power under solar fluctuations. The TCHB-VSC and NAS batteries complement one another as TCHB enables the NAS container to be connected directly with its H-bridges for independent state-of-charge (SOC) control of the battery. The NAS-battery provides DC input source to TCHB VSC for staircase voltage waveform generation and enables NAS-BES to have high voltage integration with the grid. In addition, the fundamental switching gave high conversion efficiency and reduced switching stress over high-frequency schemes. This integrated system is designed and modeled to validate the performance under solar dynamics. Simulation results are discussed in detail to present a solar photovoltaic (SPV) system with improved power quality.
具有变压器隔离的大型太阳能- bes系统级联变流器
在这项工作中,一个兆瓦级的电压源变换器(VSC)被开关在基频上。该变换器可以从级联的h桥单元获得11电平。变压器隔离(11L-TCHB)与额定功率为24MW/16SMWh的电池储能(BES)一起实现。BES用于40MW太阳能光伏电站,用于支持太阳能波动下的有功功率。TCHB- vsc和NAS电池相辅相成,因为TCHB使NAS容器可以直接与其h桥连接,从而实现对电池的独立充电状态(SOC)控制。nas -电池为TCHB VSC提供直流输入源,产生阶梯电压波形,使NAS-BES与电网实现高压集成。此外,基频开关具有较高的转换效率,减少了高频方案的开关应力。为了验证该集成系统在太阳动力学下的性能,对其进行了设计和建模。详细讨论了仿真结果,提出了一种电能质量得到改善的太阳能光伏系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信