Joint segmentation of right and left cardiac ventricles using multi-label graph cut

Damien Grosgeorge, C. Petitjean, S. Ruan
{"title":"Joint segmentation of right and left cardiac ventricles using multi-label graph cut","authors":"Damien Grosgeorge, C. Petitjean, S. Ruan","doi":"10.1109/ISBI.2014.6867900","DOIUrl":null,"url":null,"abstract":"Segmenting the left ventricle (LV) and the right ventricle (RV) in magnetic resonance (MR) images is required for cardiac function assessment. In particular, the segmentation of the RV is a difficult task due to low contrast with surrounding tissues and high shape variability. To overcome these problems, we introduce a fully automatic segmentation method based on multi-label graph cuts, that makes use of a probabilistic shape model. The shape model is obtained by merging several atlases after their non-rigid registration on the unseen image. This prior is then incorporated into the multi-label graph cut framework in order to guide the segmentation. Our automatic segmentation method has been applied on 754 MR images. We show that encouraging results can be obtained for this challenging application.","PeriodicalId":440405,"journal":{"name":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2014.6867900","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Segmenting the left ventricle (LV) and the right ventricle (RV) in magnetic resonance (MR) images is required for cardiac function assessment. In particular, the segmentation of the RV is a difficult task due to low contrast with surrounding tissues and high shape variability. To overcome these problems, we introduce a fully automatic segmentation method based on multi-label graph cuts, that makes use of a probabilistic shape model. The shape model is obtained by merging several atlases after their non-rigid registration on the unseen image. This prior is then incorporated into the multi-label graph cut framework in order to guide the segmentation. Our automatic segmentation method has been applied on 754 MR images. We show that encouraging results can be obtained for this challenging application.
利用多标签图割对左、右心室进行联合分割
在磁共振(MR)图像中分割左心室(LV)和右心室(RV)是心功能评估所必需的。特别是,由于与周围组织的低对比度和高形状变异性,RV的分割是一项困难的任务。为了克服这些问题,我们引入了一种基于多标签图切割的全自动分割方法,该方法利用了概率形状模型。在未见图像上进行非刚性配准后,将多个地图集合并得到形状模型。然后将此先验合并到多标签图切割框架中,以指导分割。我们的自动分割方法已应用于754张MR图像。我们表明,这种具有挑战性的应用可以获得令人鼓舞的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信