Pattern classification by distributed representation of fuzzy rules

H. Ishibuchi, K. Nozaki, H. Tanaka
{"title":"Pattern classification by distributed representation of fuzzy rules","authors":"H. Ishibuchi, K. Nozaki, H. Tanaka","doi":"10.1109/FUZZY.1992.258736","DOIUrl":null,"url":null,"abstract":"The authors introduce the concept of distributed representation of fuzzy rules and apply it to classification problems. Distributed representation is implemented by superimposing many fuzzy rules corresponding to different fuzzy partitions of a pattern space. This means that many fuzzy rule tables are simultaneously employed, corresponding to different fuzzy partitions in fuzzy inference. To apply distributed representation of fuzzy rules to pattern classification problems, the authors first propose an algorithm to generate fuzzy rules from numerical data. Next they propose a fuzzy inference method using the generated fuzzy rules. The classification power of distributed representation was compared with that of ordinary fuzzy rules which can be viewed as a local representation.<<ETX>>","PeriodicalId":222263,"journal":{"name":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1992 Proceedings] IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.1992.258736","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

The authors introduce the concept of distributed representation of fuzzy rules and apply it to classification problems. Distributed representation is implemented by superimposing many fuzzy rules corresponding to different fuzzy partitions of a pattern space. This means that many fuzzy rule tables are simultaneously employed, corresponding to different fuzzy partitions in fuzzy inference. To apply distributed representation of fuzzy rules to pattern classification problems, the authors first propose an algorithm to generate fuzzy rules from numerical data. Next they propose a fuzzy inference method using the generated fuzzy rules. The classification power of distributed representation was compared with that of ordinary fuzzy rules which can be viewed as a local representation.<>
基于模糊规则分布式表示的模式分类
作者引入了模糊规则的分布式表示概念,并将其应用于分类问题。分布式表示是通过叠加许多模糊规则来实现的,这些规则对应于模式空间的不同模糊分区。这意味着同时使用多个模糊规则表,对应于模糊推理中的不同模糊分区。为了将模糊规则的分布式表示应用于模式分类问题,作者首先提出了一种从数值数据生成模糊规则的算法。然后,他们利用生成的模糊规则提出了一种模糊推理方法。将分布式表示与可视为局部表示的普通模糊规则的分类能力进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信