Unsupervised Transfer Softmax Regression

Shaofei Zang, Yuhu Cheng, X. Wang, Jianwei Ma
{"title":"Unsupervised Transfer Softmax Regression","authors":"Shaofei Zang, Yuhu Cheng, X. Wang, Jianwei Ma","doi":"10.1145/3375998.3376027","DOIUrl":null,"url":null,"abstract":"Cross-domain image classification is a challenge in numerous practical applications due to the variance between the training and testing datasets. To solve the problem, we propose a new classification method named unsupervised transfer softmax regression in this paper. It firstly introduce joint distribution adaptation to the objective function of the softmax regression to construct a new classifier for knowledge transfer. Then the new objective function is solved by gradient descent method to realize the unified optimization of classification and feature extraction. Finally, we evaluate the effectiveness of the proposed method by the classification experiments on image data sets and text data sets, and the result demonstrate the good performance of our approach.","PeriodicalId":395773,"journal":{"name":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 8th International Conference on Networks, Communication and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375998.3376027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Cross-domain image classification is a challenge in numerous practical applications due to the variance between the training and testing datasets. To solve the problem, we propose a new classification method named unsupervised transfer softmax regression in this paper. It firstly introduce joint distribution adaptation to the objective function of the softmax regression to construct a new classifier for knowledge transfer. Then the new objective function is solved by gradient descent method to realize the unified optimization of classification and feature extraction. Finally, we evaluate the effectiveness of the proposed method by the classification experiments on image data sets and text data sets, and the result demonstrate the good performance of our approach.
无监督传输Softmax回归
由于训练数据集和测试数据集之间的差异,跨域图像分类在许多实际应用中是一个挑战。为了解决这一问题,本文提出了一种新的分类方法——无监督转移softmax回归。首先对softmax回归的目标函数引入联合分布自适应,构造了一种新的知识转移分类器;然后用梯度下降法求解新的目标函数,实现分类和特征提取的统一优化。最后,通过对图像数据集和文本数据集的分类实验,验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信