Rough Set Based Clustering of the Self Organizing Map

E. Mohebi, M. Sap
{"title":"Rough Set Based Clustering of the Self Organizing Map","authors":"E. Mohebi, M. Sap","doi":"10.1109/ACIIDS.2009.79","DOIUrl":null,"url":null,"abstract":"The Kohonen Self Organizing Map (SOM) is an excellent tool in exploratory phase of data mining. The SOM is a popular tool that maps a high-dimensional space onto a small number of dimensions by placing similar elements close together, forming clusters. When the number of SOM units is large, to facilitate quantitative analysis of the map and the data, similar units needs to be grouped i.e., clustered. In this paper a two-level clustering based on SOM is proposed, which employs rough set theory to capture the inherent uncertainty involved in cluster analysis. The two-stage procedure (first using SOM to produce the prototypes that are then clustered in the second stage) is found to perform well when compared with crisp clustering of the data and increase the accuracy.","PeriodicalId":275776,"journal":{"name":"2009 First Asian Conference on Intelligent Information and Database Systems","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 First Asian Conference on Intelligent Information and Database Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACIIDS.2009.79","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The Kohonen Self Organizing Map (SOM) is an excellent tool in exploratory phase of data mining. The SOM is a popular tool that maps a high-dimensional space onto a small number of dimensions by placing similar elements close together, forming clusters. When the number of SOM units is large, to facilitate quantitative analysis of the map and the data, similar units needs to be grouped i.e., clustered. In this paper a two-level clustering based on SOM is proposed, which employs rough set theory to capture the inherent uncertainty involved in cluster analysis. The two-stage procedure (first using SOM to produce the prototypes that are then clustered in the second stage) is found to perform well when compared with crisp clustering of the data and increase the accuracy.
基于粗糙集的自组织映射聚类
Kohonen自组织图(SOM)是数据挖掘探索阶段的一个优秀工具。SOM是一种流行的工具,它通过将相似的元素紧密地放在一起形成集群,将高维空间映射到少量维度上。当SOM单元数量较大时,为了便于对地图和数据进行定量分析,需要对相似的单元进行分组,即聚类。本文提出了一种基于SOM的两级聚类方法,该方法利用粗糙集理论捕捉聚类分析中固有的不确定性。与清晰的数据聚类相比,发现两阶段过程(首先使用SOM生成原型,然后在第二阶段聚类)表现良好,并提高了准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信