Maximum likelihood parameter estimation of multiple chirp signals by a new Markov chain Monte Carlo approach

Y. Lin, Y. Peng, X. Wang
{"title":"Maximum likelihood parameter estimation of multiple chirp signals by a new Markov chain Monte Carlo approach","authors":"Y. Lin, Y. Peng, X. Wang","doi":"10.1109/NRC.2004.1316487","DOIUrl":null,"url":null,"abstract":"In this paper, a novel method for estimating the parameters of multiple chirp signals in additive Gaussian white noise is proposed. The method combines a global optimization theorem with a new Markov chain Monte Carlo algorithm, called the simulated annealing one-variable-at-a-time random walk Metropolis-Hastings algorithm. It is a computationally modest implementation of maximum likelihood estimation and has no error propagation effect. Simulation results show that the proposed method can give good estimates for the unknown parameters, even when the parameters of the individual chirp signals are closely spaced and the Cramer-Rao lower bound can be attained even at low signal-to-noise ratio.","PeriodicalId":268965,"journal":{"name":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2004-04-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No.04CH37509)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NRC.2004.1316487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

In this paper, a novel method for estimating the parameters of multiple chirp signals in additive Gaussian white noise is proposed. The method combines a global optimization theorem with a new Markov chain Monte Carlo algorithm, called the simulated annealing one-variable-at-a-time random walk Metropolis-Hastings algorithm. It is a computationally modest implementation of maximum likelihood estimation and has no error propagation effect. Simulation results show that the proposed method can give good estimates for the unknown parameters, even when the parameters of the individual chirp signals are closely spaced and the Cramer-Rao lower bound can be attained even at low signal-to-noise ratio.
用一种新的马尔可夫链蒙特卡罗方法估计多重啁啾信号的极大似然参数
提出了一种在加性高斯白噪声中估计多重啁啾信号参数的新方法。该方法将全局优化定理与一种新的马尔可夫链蒙特卡罗算法相结合,称为模拟退火单变量随机行走Metropolis-Hastings算法。它是最大似然估计的一种计算适度的实现,并且没有误差传播效应。仿真结果表明,即使单个啁啾信号的参数间隔很近,该方法也能很好地估计未知参数,即使在低信噪比下也能达到Cramer-Rao下界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信