Interval-scaling for multitarget localization

Jani Saloranta, D. Macagnano, G. Abreu
{"title":"Interval-scaling for multitarget localization","authors":"Jani Saloranta, D. Macagnano, G. Abreu","doi":"10.1109/WPNC.2012.6268739","DOIUrl":null,"url":null,"abstract":"In this paper we illustrate the potential of the generic I-SCAL framework for localization. Much like algebraic Multidimensional Scaling, which was originally utilized in other fields of science until it was identified as suitable for localization, I-SCAL is a SMACOF optimization-based generic framework which, to the best of our knowledge is here, for the first time, employed to solve the localization problem. To do so we propose to modify the rectangular objects employed in the standard I-SCAL framework with circular ones, resulting in faster and better performing algorithm in standard localization scenario. In addition it is shown that the computational complexity be further reduced by means of a vector extrapolation stage added in the optimization stage. The application of the proposed algorithm to the two standard localization scenarios here considered shows that the I-SCAL algorithm outperforms the SMACOF algorithm.","PeriodicalId":399340,"journal":{"name":"2012 9th Workshop on Positioning, Navigation and Communication","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 9th Workshop on Positioning, Navigation and Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WPNC.2012.6268739","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper we illustrate the potential of the generic I-SCAL framework for localization. Much like algebraic Multidimensional Scaling, which was originally utilized in other fields of science until it was identified as suitable for localization, I-SCAL is a SMACOF optimization-based generic framework which, to the best of our knowledge is here, for the first time, employed to solve the localization problem. To do so we propose to modify the rectangular objects employed in the standard I-SCAL framework with circular ones, resulting in faster and better performing algorithm in standard localization scenario. In addition it is shown that the computational complexity be further reduced by means of a vector extrapolation stage added in the optimization stage. The application of the proposed algorithm to the two standard localization scenarios here considered shows that the I-SCAL algorithm outperforms the SMACOF algorithm.
多目标定位的区间尺度
在本文中,我们说明了通用I-SCAL框架在本地化方面的潜力。就像代数多维尺度一样,它最初被用于其他科学领域,直到它被确定为适合定位,I-SCAL是一个基于SMACOF优化的通用框架,据我们所知,这是第一次用于解决定位问题。为此,我们建议将标准I-SCAL框架中使用的矩形对象修改为圆形对象,从而使算法在标准定位场景中更快更好地执行。此外,通过在优化阶段增加一个向量外推阶段,进一步降低了计算复杂度。本文提出的算法在两种标准定位场景下的应用表明,I-SCAL算法优于SMACOF算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信