Classification of muscle twitch response using ANN: Application in multi-pad electrode optimization

N. Malešević, L. Popovic, G. Bijelic, G. Kvascev
{"title":"Classification of muscle twitch response using ANN: Application in multi-pad electrode optimization","authors":"N. Malešević, L. Popovic, G. Bijelic, G. Kvascev","doi":"10.1109/NEUREL.2010.5644042","DOIUrl":null,"url":null,"abstract":"In this paper we present a method for optimization of spatial selectivity of multi-pad electrode during transcutaneous Functional Electrical Stimulation (FES). The presented method is based on measurent of individual muscle twitches using Micro-Electro-Mechanical Systems (MEMS) accelerometers positioned on hand, while stimulating with low frequency electrical stimulation via pads within multi-pad electrode. When elicited, wrist or fingers flexion/extension produce different, characteristic wave shapes of acceleration, by using trained Artificial Neural Network (ANN) we can detect these characteristic signals and detect correlation of each pad and activated muscle beneath. Results presented in this paper show high degree of accurate classification of the elicited movement in inter-subject testing.","PeriodicalId":227890,"journal":{"name":"10th Symposium on Neural Network Applications in Electrical Engineering","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"10th Symposium on Neural Network Applications in Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NEUREL.2010.5644042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper we present a method for optimization of spatial selectivity of multi-pad electrode during transcutaneous Functional Electrical Stimulation (FES). The presented method is based on measurent of individual muscle twitches using Micro-Electro-Mechanical Systems (MEMS) accelerometers positioned on hand, while stimulating with low frequency electrical stimulation via pads within multi-pad electrode. When elicited, wrist or fingers flexion/extension produce different, characteristic wave shapes of acceleration, by using trained Artificial Neural Network (ANN) we can detect these characteristic signals and detect correlation of each pad and activated muscle beneath. Results presented in this paper show high degree of accurate classification of the elicited movement in inter-subject testing.
基于神经网络的肌肉抽动反应分类:在多垫电极优化中的应用
本文提出了一种优化经皮功能电刺激(FES)过程中多垫电极空间选择性的方法。所提出的方法是基于使用放置在手上的微机电系统(MEMS)加速度计测量单个肌肉抽搐,同时通过多板电极内的衬垫进行低频电刺激。当被激发时,手腕或手指的屈伸会产生不同的、特征的加速波形,通过使用训练好的人工神经网络(ANN),我们可以检测这些特征信号,并检测每个垫和下面激活的肌肉的相关性。实验结果表明,在被试间测试中,被试动作的分类准确率较高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信