Linear Models are Most Favorable among Generalized Linear Models

Kuan-Yun Lee, T. Courtade
{"title":"Linear Models are Most Favorable among Generalized Linear Models","authors":"Kuan-Yun Lee, T. Courtade","doi":"10.1109/ISIT44484.2020.9174124","DOIUrl":null,"url":null,"abstract":"We establish a nonasymptotic lower bound on the L2 minimax risk for a class of generalized linear models. It is further shown that the minimax risk for the canonical linear model matches this lower bound up to a universal constant. Therefore, the canonical linear model may be regarded as most favorable among the considered class of generalized linear models (in terms of minimax risk). The proof makes use of an information-theoretic Bayesian Cramér-Rao bound for log-concave priors, established by Aras et al. (2019).","PeriodicalId":159311,"journal":{"name":"2020 IEEE International Symposium on Information Theory (ISIT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Symposium on Information Theory (ISIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT44484.2020.9174124","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We establish a nonasymptotic lower bound on the L2 minimax risk for a class of generalized linear models. It is further shown that the minimax risk for the canonical linear model matches this lower bound up to a universal constant. Therefore, the canonical linear model may be regarded as most favorable among the considered class of generalized linear models (in terms of minimax risk). The proof makes use of an information-theoretic Bayesian Cramér-Rao bound for log-concave priors, established by Aras et al. (2019).
在广义线性模型中,线性模型是最有利的
建立了一类广义线性模型的L2极大极小风险的非渐近下界。进一步证明了典型线性模型的极大极小风险与这个下界匹配到一个普遍常数。因此,在考虑的一类广义线性模型中,规范线性模型可以被认为是最有利的(就最小最大风险而言)。该证明使用了由Aras等人(2019)建立的log-凹先验的信息论贝叶斯cram r- rao界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信