{"title":"A silicon-based, fully integrated pulse electron paramagnetic resonance system for mm-wave spectroscopy","authors":"Charles Chen, P. Seifi, A. Babakhani","doi":"10.1109/MWSYM.2013.6697730","DOIUrl":null,"url":null,"abstract":"An integrated transceiver for time-domain EPR spectroscopy is implemented using a 0.13μm SiGe BiCMOS technology. The system utilizes an on-chip resonator to study time domain relaxation behavior of paramagnetic samples, i.e. materials with unpaired electron spins. The single-chip EPR spectrometer consists of an EPR resonator, 22-26GHz tunable VCO, a programmable pulse generation block, RF buffer and power amplifier, a multi-stage LNA, and down-conversion mixer all in a 2mm2-size chip area.","PeriodicalId":128968,"journal":{"name":"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE MTT-S International Microwave Symposium Digest (MTT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2013.6697730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
An integrated transceiver for time-domain EPR spectroscopy is implemented using a 0.13μm SiGe BiCMOS technology. The system utilizes an on-chip resonator to study time domain relaxation behavior of paramagnetic samples, i.e. materials with unpaired electron spins. The single-chip EPR spectrometer consists of an EPR resonator, 22-26GHz tunable VCO, a programmable pulse generation block, RF buffer and power amplifier, a multi-stage LNA, and down-conversion mixer all in a 2mm2-size chip area.