R. Beres, Xiongfei Wang, F. Blaabjerg, C. Bak, H. Matsumori, Toshihisa Shimizu
{"title":"Evaluation of core loss in magnetic materials employed in utility grid AC filters","authors":"R. Beres, Xiongfei Wang, F. Blaabjerg, C. Bak, H. Matsumori, Toshihisa Shimizu","doi":"10.1109/APEC.2016.7468298","DOIUrl":null,"url":null,"abstract":"Inductive components play an important role in filtering the switching harmonics related to the pulse width modulation in voltage source converters. Particularly, the filter reactor on the converter side of the filter is subjected to rectangular excitation which may lead to significant losses in the core, depending on the magnetic material of choice and current ripple specifications. Additionally, shunt or series reactors that exists in LCL or trap filters and which are subjected to sinusoidal excitations have different specifications and requirements. Therefore, the core losses of different magnetic materials adopted in utility grid ac filters have been investigated and measured for both sinusoidal and rectangular excitation, with and without dc bias condition. The core loss information can ensure cost-effective passive filter designs and may avoid trial-error design procedures of the passive components parameters.","PeriodicalId":143091,"journal":{"name":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Applied Power Electronics Conference and Exposition (APEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APEC.2016.7468298","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14
Abstract
Inductive components play an important role in filtering the switching harmonics related to the pulse width modulation in voltage source converters. Particularly, the filter reactor on the converter side of the filter is subjected to rectangular excitation which may lead to significant losses in the core, depending on the magnetic material of choice and current ripple specifications. Additionally, shunt or series reactors that exists in LCL or trap filters and which are subjected to sinusoidal excitations have different specifications and requirements. Therefore, the core losses of different magnetic materials adopted in utility grid ac filters have been investigated and measured for both sinusoidal and rectangular excitation, with and without dc bias condition. The core loss information can ensure cost-effective passive filter designs and may avoid trial-error design procedures of the passive components parameters.