A window cumulative normalized distance based phase optimization track association model

Jia-Zhou He, Guan H. Pan, Qing Cai, Yan-Li Li, Shi-Fu Chen
{"title":"A window cumulative normalized distance based phase optimization track association model","authors":"Jia-Zhou He, Guan H. Pan, Qing Cai, Yan-Li Li, Shi-Fu Chen","doi":"10.1109/ICIF.2002.1020970","DOIUrl":null,"url":null,"abstract":"A novel approach is proposed, which is able to overcome several shortcomings existing in the typical distributed multi-sensor track association (MSTA) model-the sequential minimum normalized distance nearest neighbor (SMNDNN) correlation and the sequential minimum mean square error (SMMSE) fusion. By considering the mutual dependency in the track estimation errors between different sensors and using the window cumulative normalized distance (WCND) technique, this phase optimization algorithm can guarantee stability in dealing with track association, especially in a dense track environment. The experiments demonstrate that our model can efficiently resolve the MSTA, the ad hoc dense track association problem.","PeriodicalId":399150,"journal":{"name":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth International Conference on Information Fusion. FUSION 2002. (IEEE Cat.No.02EX5997)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIF.2002.1020970","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A novel approach is proposed, which is able to overcome several shortcomings existing in the typical distributed multi-sensor track association (MSTA) model-the sequential minimum normalized distance nearest neighbor (SMNDNN) correlation and the sequential minimum mean square error (SMMSE) fusion. By considering the mutual dependency in the track estimation errors between different sensors and using the window cumulative normalized distance (WCND) technique, this phase optimization algorithm can guarantee stability in dealing with track association, especially in a dense track environment. The experiments demonstrate that our model can efficiently resolve the MSTA, the ad hoc dense track association problem.
基于窗口累积归一化距离的相位优化航迹关联模型
针对典型的分布式多传感器航迹关联(MSTA)模型存在的几个缺点,提出了一种新的方法——序贯最小归一化距离最近邻(SMNDNN)相关和序贯最小均方误差(SMMSE)融合。该相位优化算法考虑了不同传感器航迹估计误差的相互依赖性,并采用窗口累积归一化距离(WCND)技术,保证了处理航迹关联时的稳定性,特别是在密集航迹环境下。实验结果表明,该模型能够有效地解决随机密集航迹关联问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信