Florian Muralter, Michael Hani, H. Landaluce, A. Perallos, Erwin M. Biebl
{"title":"UHF RFID chip impedance and sensitivity measurement using a transmission line transformer","authors":"Florian Muralter, Michael Hani, H. Landaluce, A. Perallos, Erwin M. Biebl","doi":"10.1109/RFID52461.2021.9444382","DOIUrl":null,"url":null,"abstract":"This article describes an alternative procedure for measuring the impedance of an ultra high frequency (UHF) radio frequency identification (RFID) chip and finding its turnon-point. The proposed method is based on measuring the balanced impedance of the RFID chip using a standard vector network analyzer (VNA) and a custom fabricated printed circuit board (PCB) test fixture. The test fixture uses a transmission line transformer to (1) provide a balanced signal to the ports of the RFID chip and (2) achieve a pre-matching to avoid the inaccuracies resulting from measuring high Q components with a VNA. No additional RFID reader is needed, as the turnon-point is extracted from the measured voltage reflection coefficient as a function of frequency and input power. A matching network is designed using a Smith chart approach to prove the applicability of the method by measuring the resulting reflection coefficient. A comparison with the typically used single-ended technique is provided.","PeriodicalId":358808,"journal":{"name":"2021 IEEE International Conference on RFID (RFID)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on RFID (RFID)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFID52461.2021.9444382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article describes an alternative procedure for measuring the impedance of an ultra high frequency (UHF) radio frequency identification (RFID) chip and finding its turnon-point. The proposed method is based on measuring the balanced impedance of the RFID chip using a standard vector network analyzer (VNA) and a custom fabricated printed circuit board (PCB) test fixture. The test fixture uses a transmission line transformer to (1) provide a balanced signal to the ports of the RFID chip and (2) achieve a pre-matching to avoid the inaccuracies resulting from measuring high Q components with a VNA. No additional RFID reader is needed, as the turnon-point is extracted from the measured voltage reflection coefficient as a function of frequency and input power. A matching network is designed using a Smith chart approach to prove the applicability of the method by measuring the resulting reflection coefficient. A comparison with the typically used single-ended technique is provided.