Harlan L. Etheridge, R. Sriram
{"title":"A comparison of the relative costs of financial distress models: artificial neural networks, logit and multivariate discriminant analysis","authors":"Harlan L. Etheridge, R. Sriram","doi":"10.1002/(SICI)1099-1174(199709)6:3%3C235::AID-ISAF135%3E3.0.CO;2-N","DOIUrl":null,"url":null,"abstract":"This study uses two artificial neural networks (ANNs), categorical learning/instar ANNs and probabilistic (PNN) ANNs, suitable for classification and prediction type issues, and compares them to traditional multivariate discriminant analysis (MDA) and logit to examine financial distress one to three years prior to failure. The results indicate that traditional MDA and logit perform best with the lowest overall error rates. However, when the relative error costs are considered, the ANNs perform better than traditional logit or MDA. Also, as the time period moves farther away from the eventual failure date, ANNs perform more accurately and with lower relative error costs than logit or MDA. This supports the conclusion that for auditors and other evaluators interested in early warning techniques, categorical learning network and probabilistic ANNs would be useful. © 1997 John Wiley & Sons, Ltd.","PeriodicalId":153549,"journal":{"name":"Intell. Syst. Account. Finance Manag.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"72","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intell. Syst. Account. Finance Manag.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1099-1174(199709)6:3%3C235::AID-ISAF135%3E3.0.CO;2-N","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 72
财务困境模型的相对成本比较:人工神经网络、logit和多元判别分析
本研究使用两种人工神经网络(ann),分类学习/instar ann和概率神经网络(PNN),适用于分类和预测类型问题,并将它们与传统的多元判别分析(MDA)和logit进行比较,以在失败前一到三年内检查财务困境。结果表明,传统的MDA和logit在总体错误率最低的情况下表现最好。然而,当考虑相对误差成本时,人工神经网络的性能优于传统的logit或MDA。此外,随着时间周期离最终故障日期越来越远,人工神经网络比logit或MDA执行得更准确,相对错误成本更低。这支持了对早期预警技术感兴趣的审计人员和其他评估人员的结论,分类学习网络和概率人工神经网络将是有用的。©1997 John Wiley & Sons, Ltd
本文章由计算机程序翻译,如有差异,请以英文原文为准。