B. Linder, J. Stathis, R. Wachnik, E. Wu, S. Cohen, A. Ray, A. Vayshenker
{"title":"Gate oxide breakdown under Current Limited Constant Voltage Stress","authors":"B. Linder, J. Stathis, R. Wachnik, E. Wu, S. Cohen, A. Ray, A. Vayshenker","doi":"10.1109/VLSIT.2000.852830","DOIUrl":null,"url":null,"abstract":"Ultra-thin oxide reliability has become an important issue in integrated circuit scaling. Present reliability methodology stresses oxides with a low impedance voltage source. This, though, does not represent the stress under circuit configurations, in which transistors are driven by other transistors. A Current Limited Constant Voltage Stress simulates circuit stress well. Limiting the current during the breakdown event reduces the post-breakdown conduction. Limiting the current to a sufficiently low value may prevent device failure, altogether.","PeriodicalId":268624,"journal":{"name":"2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Symposium on VLSI Technology. Digest of Technical Papers (Cat. No.00CH37104)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIT.2000.852830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 80
Abstract
Ultra-thin oxide reliability has become an important issue in integrated circuit scaling. Present reliability methodology stresses oxides with a low impedance voltage source. This, though, does not represent the stress under circuit configurations, in which transistors are driven by other transistors. A Current Limited Constant Voltage Stress simulates circuit stress well. Limiting the current during the breakdown event reduces the post-breakdown conduction. Limiting the current to a sufficiently low value may prevent device failure, altogether.